• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 1
  • Tagged with
  • 20
  • 20
  • 9
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seismic interpretation and 2D restoration of F-A gas field, Bredasdorp Basin south coast of South Africa

Ngejane, Zamazulu January 2014 (has links)
>Magister Scientiae - MSc / Seismic interpretation is always somewhat an uncertainty and questions on whether the horizons picked are properly correlated across faults and or the structures mapped are geologically or geometrically sensible always raise a concern as it provides the principal source of subsurface information used commonly in exploration by the oil and gas industry. In this study an attempt of delineating what are or not geological features has been done by validating the seismic structural interpretation using the restoration technique which also provided information about the extensional history of the study area. The seismic data, horizon and fault interpretation have been depth converted in 2DMove software followed by a sequential restoration and decompacting workflow. Simple shear was used as the restoration algorithm based on the deformation style of the basin (extensional basin). The seismic interpretation is valid and studies on tectonics interplay in basin development (gas field scale) during the Late-Jurassic- Early Cretaceous are based on the results of the four balanced cross-sections. They indicate that the Basin is not a simple extensional rift Basin but was rather formed through an alternation of extensional and compressional phases. The area understudy has undergone extension since rifting onset (break-up of Gondwana) with two intervening minor inversion episodes further NW and SE showing no significant shortening on the central part. A maximum extension is noted within the central part of the study area along the XL_1248 thus more accommodation space and subsequently thicker sediment accumulations are encountered in this region.
2

Petrophysical evaluation and characterization of sandstone reservoirs of the western Bredasdorp Basin, South Africa for well D-D1 and E-AP1

Maseko, Phindile Pearl January 2016 (has links)
>Magister Scientiae - MSc / The Bredasdorp Basin was formed consequent to extensional episodes during the initial stages of rifting in the Jurassic age. The basin acted as a local depocentre and was primarily infilled with late Jurassic and early Cretaceous shallow-marine and continental sediments. Two wells namely; D-D1 and E-AP1 were studied in order to evaluate the petrophysics and characterize sandstone reservoirs of the western Bredasdorp basin. This could be achieved by generating and comparing results from core analysis and wireline in order to determine if the two wells are comprised of good quality sandstone reservoirs and if the identified reservoirs produce hydrocarbons. A number of methods were employed in order to characterise and evaluate sandstone reservoir, these included; editing and normalization of raw wireline log data ,classification of lithofacies on the basis of lithology, sedimentary structures, facies distribution, grain size variation, sorting of grains, fossils and bioturbation; calibration of log and core data to determine parameters for petrophysical interpretation; volume of clay; determination of porosity, permeability and fluid saturation, cut-off determination to distinguish between pay and non-pay sands. Borehole D-D1 is located in the western part of the Bredasdorp Basin. Only two reservoirs in well D-D1 indicated to have pay parameters with an average porosity ranging from 11.3% to 16%, average saturation from 0.6% to 21.5% and an volume of clay from 26.5% to 31.5%. This well was abandoned due to poor oil shows according to the geological well completion report. On the contrary well E-AP1 situated in the northwestern section of the basin showed good quality reservoir sandstones occurring in the 19082m to 26963m intervals though predominantly water saturated. Pay parameters for all five reservoirs in this well showed zero or no average porosity, saturation and volume of clay.
3

Geomechanical characterization and reservoir Simulation of a carbon storage project in e-m depleted Gas field in South Africa

Saffou, Eric January 2020 (has links)
Philosophiae Doctor - PhD / Geomechanical analysis and integrity assessment of hydrocarbon reservoirs upon depletion and injection are crucial to ensure that CO2 storage projects can be safely implemented. The Bredasdorp Basin in South Africa has great potential for CO2 storage, given its hugely available exploration data. However, there has not been any geomechanical characterization carried out on this basin to determine its integrity issues. This study aims to investigate the feasibility of a carbon storage project in the E-M depleted gas field. The preliminary geological assessment demonstrates that Zone 2 and Zone 3 display acceptable injectivity for CO2 injection of the E-M gas field. Seismic lines display faults that could affect the caprock's integrity during depletion and carbon storage. Geomechanical characterization provides a guideline as to how geomechanical analysis of depleted fields can be done for a safe CO2 sequestration practice. The geomechanical model constructed at a depth of 2570 m indicated that the magnitudes of the principal vertical, minimum, and maximum horizontal stresses in the field are respectively 57 MPa, 41 MPa, and 42-46 MPa. Fault and fracture stabilities were examined before and after depletion. It was found that faults and fractures in compartments C1 and C2 of the reservoir are stable before and after depletion, while normal faults (FNS8 and FNS9) in compartment C3 dipping SW were critically stressed. The minimum sustainable pressure of the reservoir determined by simulating depletion is 6 MPa. Below that, pressure depletion causes normal faulting in reservoir compartments C1 and C2. The maximum sustainable pressure, on the other hand, was found to be 25 MPa. The geomechanical studies also reveal that it is possible that the reservoir experienced compaction of 8 cm during depletion and will experience an uplift of 3.2 cm during 71 years of injection. The economic model of a CO2-enhanced gas recovery project in E-M gas field, the annual expenses (Aexp) of carbon capture and storage range between Zar20 3.31 × 109 and Zar20 4.10 × 109. The annual revenues (RA) were estimated to be Zar20 1.42 × 1010. The cash flow analysis derived from Aexp and RA confirms that enhanced gas recovery could partially offset the cost of CO2 storage if a minimum of 5 % of CO2 fraction is allowed in the natural gas recovered. Geological and geomechanical studies have demonstrated that carbon storage is physically feasible in the E-M gas field. However, the project's completion lies in the among the gas recovered to balance the cost of CO2. http://
4

Geometry and geobody extraction of a submarine channel complex in the Sable Field, Bredasdorp Basin

Stoltenkamp, Razeen January 2015 (has links)
>Magister Scientiae - MSc / The Sable Field constitutes a Basin Floor Channel (BFC) complex (E-BD reservoir) and a Basin Floor Fan (BFF) complex (E-CE reservoir). The reservoir sands were deposited during early-drift sedimentation in the Bredasdorp Basin. Paleo-current flows from the west, filling the basin with sediments that are eroded off the continental shelf (Agulhus Arch) and deposited on the base of the continental slope and basin floor. Turbidite flows off the Agulhus arch have deposited the Sable Fields reservoirs, where the larger channelized reservoir body takes an 80° bend off the continental slope and flows onto the basin floor. This 3-D reservoir highlights the reservoirs internal heterogeneity and complexity at the well bore and away from the well bore. Well tops tie wells to the 3-D seismic cube for; reservoir location and delineation, velocity modelling and subsequent conversion of the mapped surfaces from time to depth. Core and petro-physical analysis were used to outline the depositional facies within the investigated wells namely: E-BD5, E-BD2, E-BD1 and E-CE1. Correlation of depositional facies at the well bore with their corresponding seismic facies, allows for extrapolation of facies away from the well bore. The internal heterogeneity of the reservoir is outlined using an integrated methodology, which is based on log scale depositional features (channels, sheets, lobes) that are extrapolated to field scale (sand rich complex) using corresponding top and base reservoir seismic responses. The investigated thick region of sediment accumulation on: the continental slope, the base of the continental slope and basin floor is deposited on the 13AT1 early drift unconformity. The reservoir is outlined from the up-dip to the down-dip reaches of the field. Well E–BD5 has tapped into the proximal region (up-dip), with reservoir comprising of amalgamated channel sands that are deposited by laterally switching and stacking channelized sand bodies. Channel meander facies are seen in the upper portion of the reservoir, with massive channel fill in the lower parts. The channel fill constitutes a high net to gross with little to no lateral facies variations. This confined environment is dominated by amalgamated massive sands (on-axis) that are thinner bedded towards the banks of the channels (off-axis). A high degree of channel amalgamation has been interpreted in both up-dip wells E-BD5 and E-BD2. This channelized reservoir is at least 2km wide and 6km long, before the larger channel makes a rapid 80° change in paleo-current direction. This is possibly the result of basin floor topography and the stacking of previously deposited sand complexes which alter local sea floor topography. The vertical and lateral continuity of the channelised reservoir is generally excellent due to the high degree of channel amalgamation. The stacked channel complex constitutes a gross thickness of 76.2m (68.5m Net sand) in well E-BD5, and a gross thickness 25m (23m Net sand) in well E-BD2. Channel sands in well E-BD5 have an average porosity of 15% while the average porosity of channel sands in well E-BD2 (further down-dip) is 17%. This up-dip channelised region results in high amplitude reflections due to hydrocarbon charged sand juxtaposed against hemipelagic muds and silty levee facies. Well E-BD1 has tapped into a relatively confined sand complex deposited at the base of the continental slope. The amalgamated lobe and sheet sand complex is entirely encased in hemi pelagic mud. These reservoir sands are interpreted to be deposited in the Channel Lobe Transition Zone (CLTZ), thus the reservoir sands are interpreted to have a transitional depositional style (generally channelized sheets). The CLTZ region is thus dominated by both channel complex and lobe complex elements. The E-BD1 reservoir constitutes a number of amalgamated elements that result in a reservoir zone with an average porosity of 16.4%. These include: amalgamated thick bedded sheet sand (lobe axis) associated with deep depositional feeder channels; thin bedded sheet sands (off lobe axis), broad thin amalgamated lobe elements, layered thick bedded sand sheets and deep broad depositional channels. The low sinuosity broad depositional-channels and elongate lobe elements are expressed as lobate amalgamated sheets of sand which is up to 2-3km wide, 5km long and 30m thick (29.7m nett sand) at the well bore. Well E-CE1 has intersected 50m thick reservoir sand (50m nett sand) which constitutes the axis of a lobe complex where the reservoir zone has an average porosity of 14%. The sand rich complex is deposited on the unconfined basin floor. This reservoir complex constitutes amalgamated thick bedded lobe architectural elements which are massive in nature. The laterally continuous hydrocarbon charged lobe elements result in bright parallel seismic reflections. The amalgamated lobe complex is more than 5km wide. Sub-parallel horizons are attributed to the thin bedded off axis portion of the lobe complex where the net to gross is considerably less than the highly amalgamated axis of the lobe complex. The lobe complex has a moderate to good net to gross of 40-60%. The high aspect ratio of the lobe complex severely impacts the reservoirs vertical permeability, however horizontal permeability is quite good due to the extensive lateral continuity of good quality sheet sands. Based on the nature deep water architectural elements observed in this study, the internal heterogeneity of the Basin floor Fan and Basin floor channel complex’s may constitute an entire sand rich reservoir zone. All the sands may be in hydraulic communication if they are genetically related. These sands and stretch from the up-dip (wells E-BD5 & E-BD2) through to the transitional (E-BD2) and pinching out in the distal regions (E-CE1) on the basin floor. The seal constitutes a prominent shale horizon T13PW3 (8-10m thick) which is draped over the entire reservoir complex. This top seal is extrapolated from all the wells and correlated with seismic facies, thus outlining the lateral continuity and thickness variations of the top seal. This draped shale horizon exposes the thick axial portion of the amalgamated channel complex and amalgamated lobe complex.
5

The depositional environment of Sandstone reservoirs, of wells within F-AH and F-AR field, offshore the Bredasdorp basin, South Africa

Sass, Amy Lauren January 2018 (has links)
>Magister Scientiae - MSc / This study is located within the Bredasdorp Basin which is on the southern continental margin, offshore South Africa. The basin is located between Infanta and Agulhas arches and is a rift basin that is southeastern trending. Sedimentology reports have shown that the basin is predominantly filled by Aptian to Maastrichtian deposits which overlays pre-existing late Jurassic to Early Cretaceous fluvial and shallow marine syn-rift deposits. Devonian Bokkeveld Group slates and or Ordovician-Silurian Table Mountain Group quartzites are shown to be the composition of basement rocks. The study area incorporates only three wells for this research; well F-AH1, F-AH2 and F-AR1. This paper was completed through analyzing and juxtaposing interpretations of results from gamma ray wireline log analysis with core analysis in which these correlations and figures were displayed using Petrel software and Coral Draw respectively. Core analysis resulted in the identification of, sixteen litho-facies for the entire study, which were recognized according to its grain size, texture, sedimentary structures, colour changes, base and top contacts, bioturbation, noticeable minerals, etc. Facies tend to alternate all the way through each well and between different wells with similar facies being present in different wells, but they are not evident in all the cores. Based on the classification of sand bodies, core analysis provides good indication that the general depositional environment of reservoirs within the studied wells are within a marginal marine depositional environment which are tidally influenced. Log signatures typical of sandstone reservoir bodies were discovered in the field where sand bodies are 20 m thick or less and were recognized in the study area. Depositional environments were characterized based on depositional environment similarities: a funnel-shaped facies representing a crevasse splay; a cylindrical-shaped facies representing slope channel-fills representing the transgressive-regressive shallow marine shelf.
6

Sedimentological re-interpretation of zone 3 (Upper Shallow Marine) of selected wells, Bredasdorp Basin (Offshore South Africa)

Magobiyane, Nqweneka Veronica January 2014 (has links)
>Magister Scientiae - MSc / The Bredasdorp Basin is located on the southern continental margin, off the coast of South Africa. It is mostly filled by marine Aptian to Maastrichtian deposits, overlaying pre-existing Late Jurassic to Early Cretaceous fluvial and shallow marine synrift deposits. The basin is a southeastern trending rift basin, located between the Columbine-Agulhas and Infanta arches. Its basement is made up of slates of the Bokkeveld Group (Devonian) and or quartzites of the Table Mountain Group (Ordovician-Silurian). The study area extends from X-X field to Y-Y field and encompasses only four wells for this investigation; well A, B, C and D respectively. This study was done through the interpretation; integration and juxtaposing of the results from core analysis with wireline log analysis (gamma ray) using Petrel software to display and correlate the well logs. Through core analysis which is the main source of information for this study, seven facies were identified and interpreted for the entire study. These facies alternate throughout each well and between different wells, but they are not evident in all the cores. Throughout the study, well A has been used as a reference well, since it appears (according to the interpretations) to record all seven facies and has the thickest section of zone 3. This zone reflects more accommodation space than the other studied wells at the time of deposition. Facies analysis of cores and well log correlation provide evidence that the studied USM sandstones are compatible with a wave dominated estuary/island-bar lagoon system to shoreface of a wave dominated marine shelf. It has previously been demonstrated that on the northern shelf of the Bredasdorp Basin, the USM typically has an hour-glass gamma ray log signature as a result of long-term transgression and regression and this typical log shape was also identified in this study from well A .
7

Formation evaluation of deep-water reservoirs in the 13A and 14A sequences of the Central Bredasdorp Basin, offshore South Africa

Hussien, Tarig M. Hamad January 2014 (has links)
>Magister Scientiae - MSc / The goal of this study is to enhance the evaluation of subsurface reservoirs by improving the prediction of petrophysical parameters through the integration of wireline logs and core measurements. Formation evaluations of 13A and 14A sequences in the Bredasdorp Basin, offshore South Africa have been performed. Five wells in the central area of the basin have been selected for this study. Four different lithofacies (A, B, C, D) were identified, in the two cored wells, and used to predict the lithofacies from wireline logs in uncored intervals and wells. A method based on artificial neural network was used for this prediction. Facies A and B were recognized as reservoir rocks and 13 reservoir zones were identified and successfully evaluated in a detailed petrophysical model. The final shale volume was considered to be the minimum among five different methods applied in this study at any point along the well log. The porosity model was taken from the density model. A value of 2.66 g/cm3 was obtained from core measurements as the field average grain density, whereas the value of the fluid density of 0.79 g/cm3 was obtained from core porosity and bulk density cross-plot. In a water saturation model; an average water resistivity of 0.135 Ohm-m was estimated from SP method. The calculated water saturation models were calibrated with core measurements, and the Indonesia model best matched with the water saturation from conventional core analysis. Six hydraulic flow units were recognized in the studied reservoirs, and were used for permeability predictions. The permeability predicted from hydraulic flow units were found more reliable than the permeability calculated from porosity-permeability relationship. The net pay was identified for each reservoir by applying cut-offs on permeability 0.1 mD, porosity 7%, shale volume 0.35, and water saturation 0.60. The gross thickness of the reservoirs ranges from 4.83m to 41.07m and net pay intervals from 1.21m to 29.59m.
8

Electro sequence analysis and sequence stratigraphy of wells EM1, E-M3 and E-AB1 within the central Bredasdorp Basin, South Africa

Levendal, Tegan Corinne January 2015 (has links)
>Magister Scientiae - MSc / The study area for this thesis focuses on the central northern part of the Bredasdorp Basin of southern offshore South Africa, where the depositional environments of wells E-M1, E-M3 and E-AB1 were inferred through electro sequence analysis and sequence stratigraphy analysis of the corresponding seismic line (E82-005). For that, the Petroleum Agency of South Africa (PASA) allowed access to the digital data which were loaded onto softwares such as PETREL and Kingdom SMT for interpretational purposes. The lithologies and sedimentary environments were inferred based on the shape of the gamma ray logs and reported core descriptions. The sequence stratigraphy of the basin comprises three main tectonic phases: Synrift phase, Transitional phase and Drift phase. Syn-rift phase, which began in the Middle Jurassic during a period of regional tectonism, consists of interbedded red claystones and discrete pebbly sandstone beds deposited in a non-marine setting. The syn-rift 1 succession is truncated by the regional Horizon ‘C’ (1At1 unconformity). The transitional phase was influenced by tectonic events, eustatic sea-level changes and thermal subsidence and characterized by repeated episodes of progradation and aggradation between 121Ma to 103Ma, from the top of the Horizon ‘C’ (1At1 unconformity) to the base of the 14At1 unconformity. Finally the drift phase was driven by thermal subsidence and marked by the Middle Albian14At1 unconformity which is associated with deep water submarine fan sandstones. During the Turonian (15At1 unconformity), highstand led to the deposition of thin organic-rich shales. In the thesis, it is concluded that the depositional environment is shallow marine, ranging from prograding marine shelf, a transgressive marine shelf and a prograding shelf edge delta environment.
9

Petrophysical evaluation of sandstone reservoirs of the Central Bredasdorp Basin, Block 9, offshore South Africa

Parker, Irfaan January 2014 (has links)
>Magister Scientiae - MSc / This contribution engages in the evaluation of offshore sandstone reservoirs of the Central Bredasdorp basin, Block 9, South Africa using primarily petrophysical procedures. Four wells were selected for the basis of this study (F-AH1, F-AH2, F-AH4, and F-AR2) and were drilled in two known gas fields namely F-AH and F-AR. The primary objective of this thesis was to evaluate the potential of identified Cretaceous sandstone reservoirs through the use and comparison of conventional core, special core analysis, wire-line log and production data. A total of 30 sandstone reservoirs were identified using primarily gamma-ray log baselines coupled with neutron-density crossovers. Eleven lithofacies were recognised from core samples. The pore reduction factor was calculated, and corrected for overburden conditions. Observing core porosity distribution for all wells, well F-AH4 displayed the highest recorded porosity, whereas well F-AH1 measured the lowest recorded porosity. Low porosity values have been attributed to mud and silt lamination influence as well as calcite overgrowths. The core permeability distribution over all the studied wells ranged between 0.001 mD and 2767 mD. Oil, water, and gas, were recorded within cored sections of the wells. Average oil saturations of 3 %, 1.1 %, and 0.2 % were discovered in wells F-AH1, F-AH2, and F-AH4. Wells F-AH1 to F-AR2 each had average gas saturations of 61 %, 57 %, 27 %, and 56 % respectively; average core water saturations of 36 %, 42 %, 27 %, and 44 % were recorded per well.
10

Assessing hydrocarbon potential in cretaceous sediments in the Western Bredasdorp Sub-basin in the Outeniqua Basin South Africa

Acho, Collins Banajem January 2015 (has links)
>Magister Scientiae - MSc / The Bredasdorp Basin is one of the largest hydrocarbon producing blocks within Southern Africa. The E-M field is situated approximate 50 km west from the FA platform and was brought into commission due to the potential hydrocarbons it may hold. If this field is brought up to full producing capability it will extend the lifespan of the refining station in Mosselbay, situated on the south coast of South Africa, by approximately 8-10 years. This study is focused in block 9 off shore western part of the Bredasdorp Basin in the main Outeniqua Basin South Africa. Cretaceous Sandstone reservoirs are commonly heterogeneous consequently they may require special methods and techniques for description and evaluation. Reservoir characterization is the study of the reservoir rocks, their petrophysical properties, the fluids they contain or the manner in which they influence the movement of fluids in the subsurface. The main goal of the research is to assess the potentials of hydrocarbons in Cretaceous sediments in the Bredasdorp Basin through the integration and comparison of results from core analysis, production data and petrography studies for the evaluation and correction of key petrophysical parameters from wireline logs which could be used to generate an effective reservoir model for wells (E-BB1, E-BD2, EA01) in the Bredasdorp Basin. Porosity and permeability relationships, wire-line log data have been examined and analysed to determine how the porosity and permeability influence reservoir quality which further influences the potential of hydrocarbon accumulation in the reservoirs. The reservoir sandstone is composed mainly of fine to medium grained Sandstones with intercalation of finger stringers of Siltstone and Shale. In carrying out this research the samples are used to characterize reservoir zones through core observation, description and analyses and compare the findings with electronic data obtained from Petroleum Agency of South Africa (PASA). Secondary data obtained from (PASA) was analysed using softwares such as Interactive Petrophysics (IP), Ms Word, Ms excel and Surfer. Wireline logs of selected wells (E-BB1, E-BD2, E-A01) were generated, analysed and correlated. Surfer software also used to digitize maps of project area, porosity and permeability plotted using IP. Formation of the Bredasdorp Basin and it surrounding basins during the Gondwana breakup. The Bredasdorp Basin consists mainly of tilting half graben structures that formed through rifting with the break-up of Gondwanaland. The model also revealed that these faults segregate the reservoir which explains the pressure loss within the block. The production well was drilled, confining pressure relieved and pressure dropped hence production decreases. The age, transportation, deposition and thermal history of sediment in the basin, all plays a vital role in the type of hydrocarbon formation. Structural features such as faults, pore spaces determines the presence of a hydrocarbon in the reservoir. Traps could be stratigraphic or structural which helps prevent the migration of hydrocarbons from the source rock to reservoir rock or from reservoir rock to the surface over a period of time. The textural aspects included the identification of grain sizes, sorting and grain shapes. The diagenetic history, constructed from the results of the reservoir quality study revealed that there were several stages involved in the diagenetic process. It illustrated several phases of cementation with quartz, carbonate and dolomite with dissolution of feldspar. A potentially good reservoir interval was identified from the data and was characterized by several heterogeneous zones. Identifying reservoir zones was highly beneficial during devising recovery techniques for production of hydrocarbons. Secondary recovery methods have thus been devised to enhance well performance. As recommendation, additional wells are required to appraise the E-M structure and determine to what extent the cement present in the basin has affected fluid flow as well as the degree of sedimentation that could impede fluid flow. There are areas still containing untapped resources thus the recommendation for extra wells. This research may well be reviewed with more data input from PetroSA (wells, seismic and production data) for additional studies, predominantly with respect to reservoir modelling and flow simulation. Based on the findings of this research, summary of calculated Net Pay shows that in well E-BB1, reservoir (1) is at depth 2841.5m – 2874.9m has a Gross Thickness of 33.40m, Net Pay of 29.72 and Pay Summary of 29.57 and reservoir (2) has depth of 2888.1m – 2910.5m, Gross Thickness of 22.40m, Net Pay of 19.92m and Pay summary of 1.48m. Well E-AO1 has depth from 2669.5m – 2684.5m and Gross Thickness of 15.00m and has Net Pay of 10.37m and Pay Summary of 10.37m. Based on the values obtained from the data analysed the above two wells displays high potential of hydrocarbon present in the reservoirs. Meanwhile well E-BD2 has depth from 2576.2m – 2602.5m and has Gross Thickness of 350.00m, Net Pay of 28.96m and Pay Summary of 4.57 hence from data analysis this reservoir displays poor values which is an indication of poor hydrocarbon potentials.

Page generated in 0.0475 seconds