• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ground-Source Bridge Deck Deicing and Integrated Shallow Geothermal Energy Harvesting Systems

Bowers, George Allen Jr. 08 March 2016 (has links)
Shallow geothermal energy (SGE) systems are becoming increasingly popular due to both their environmental and economic value. By using the ground as a source and sink for thermal energy, SGE systems are able to more efficiently heat and cool structures. However, their utility beyond structural heating and cooling is being realized as their applications now extend to slab and pavement heating, grain and agricultural drying, and swimming pool temperature control. Relatively recently, SGE systems have been combined with deep foundations to create a dual purpose element that can provide both structural support as well as thermal energy exchange with the subsurface. These thermo-active foundations provide the benefits of SGE systems without the additional installation costs. One of the novel applications of thermo-active foundations is in bridge deck deicing. Bridge decks experience two main winter weather related problems. The first of which is preferential icing, where the bridge freezes before the adjacent roadway because the bridge undergoes hastened energy loss due to its exposed nature. The second problem is the accelerated deterioration of concrete bridge decks resulting from the application of salts and other chemicals that are used to prevent accumulation and/or melt the frozen precipitation on roads and bridges. By utilizing the foundation of a bridge as a mechanism by which to access the shallow geothermal energy of the subsurface, energy can be supplied to the deck during the winter to melt and/or prevent frozen precipitation. An experimental ground-source bridge deck deicing system was constructed and the performance is discussed. Numerical models simulating the bridge deck and subsurface system components were also created and validated using the results from the numerical tests. Furthermore, the observed loads that result in a foundation from bridge deck deicing tests are shown. In order to better design for these loads, tools were developed that can predict the temperature change in the subsurface and foundation components during operation. Mechanisms by which to improve the efficiency of these systems without increasing the size of the borehole field were explored. Ultimately this research shows that SGE can effectively be used for bridge deck deicing. / Ph. D.

Page generated in 0.0745 seconds