• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lateral load distribution for steel beams supporting an FRP panel.

Poole, Harrison Walker January 1900 (has links)
Master of Science / Department of Civil Engineering / Hani G. Melhem / Fiber Reinforced Polymer (FRP) is a relatively new material used in the field of civil engineering. FRP is composed of fibers, usually carbon or glass, bonded together using a polymer adhesive and formed into the desired structural shape. Recently, FRP deck panels have been viewed as an attractive alternative to concrete decks when replacing deteriorated bridges. The main advantages of an FRP deck are its weight (roughly 75% lighter than concrete), its high strength-to-weight ratio, and its resistance to deterioration. In bridge design, AASHTO provides load distributions to be used when determining how much load a longitudinal beam supporting a bridge deck should be designed to hold. Depending on the deck material along with other variables, a different design distribution will be used. Since FRP is a relatively new material used for bridge design, there are no provisions in the AASHTO code that provides a load distribution when designing beams supporting an FRP deck. FRP deck panels, measuring 6 ft x 8.5’, were loaded and analyzed at KSU over the past 4 years. The research conducted provides insight towards a conservative load distribution to assist engineers in future bridge designs with FRP decks. Two separate test periods produced data for this thesis. For the first test period, throughout the year of 2007, a continuous FRP panel was set up at the Civil Infrastructure Systems Laboratory at Kansas State University. This continuous panel measured 8.5 ft by 6 ft x 6 in. thick and was supported by 4 Grade A572 HP 10 x 42 steel beams. The beam spacing’s, along the 8.5 ft direction, were 2.5 ft-3.5 ft-2.5 ft. Stain gauges were mounted at mid-span of each beam to monitor the amount of load each beam was taking under a certain load. Linear variable distribution transformers (LVDT) were mounted at mid-span of each beam to measure deflection. Loads were placed at the center of the panel, with reference to the 6 ft direction and at several locations along the 8.5 ft direction. Strain and deflection readings were taken in order to determine the amount of load each beam resisted for each load location. The second period of testing started in the fall of 2010 and extended into January of 2011. This consisted of a simple-span/cantilever test set-up. The test set-up consisted of, in the 8.5 ft direction, a simply supported span of 6 ft with a 2.5 ft cantilever on one side. As done previously both beams had strain gauges along with LVDTs mounted at mid-span. There were also strain gauges were installed spaced at 1.5ft increments along one beam in order to analyze the beam behavior under certain loads. Loads were once again applied in the center of the 6 ft direction and strain and deflection readings were taken at several load locations along the 8.5 ft direction. The data was analyzed after all testing was completed. The readings from the strain gauges mounted in 1.5 ft increments along the steel beam on one side of the simple span test set-up were used to produce moment curves for the steel beam at various load locations. These moment curves were analyzed to determine how much of the panel was effectively acting on the beam when loads were placed at various distances away from the beam. Using these “effective lengths,” along with the strain taken from the mid-span of each beam, the loads each beam was resisting for different load locations were determined for both the continuously supported panel and the simply supported/cantilever panel data. Using these loads, conservative design factors were determined for FRP panels. These factors are S/5.05 for the simply supported panel and S/4.4 for the continuous panel, where “S” is the support beam spacing. Deflections measurements were used to validate the results. Percent errors, based on experimental and theoretical deflections, were found to be in the range of 10 percent to 40 percent depending on the load locations for the results in this thesis.
2

Non-Contact Lap Splices in Dissimilar Concretes

Grant, James Philip 14 September 2015 (has links)
Non-contact lap splices placed within a single concrete placement are often used and have been studied in previous research projects. However, non-contact lap splices used with each bar in a different concrete placement such that there is a cold joint between the bars, have not been investigated. This situation is found in the repair of adjacent box beam bridges and in the construction of inverted T-beam systems, among others. It is vital to understand whether the same mechanisms are present across a cold joint with two different types of concrete as are present in traditional non-contact lap splices. In this research, eight T-beam specimens with non-contact lap splices were tested. The spacing between the bars, the splice bar blockout length, and presence of transverse bars were varied to study the effectiveness of the splices. The beams were tested in four point bending so that the splice region was under constant moment and the tension forces in the spliced bars were constant. End and midspan deflections were measured along with surface strain measurements at midspan and at the quarter span points, top and bottom. Gap openings were also measured at the ends of the blockouts. The main conclusions found from this research are that beams containing non-contact lap splices were able to develop nominal capacity with the bar spacing less than or equal to 4 in. and the blockout between 17 and 20 in. long. Extending the blockouts and adding transverse bars underneath the splices did not add to the capacity. / Master of Science
3

EXPERIMENTAL INVESTIGATION OF REPAIR TECHNIQUES FOR DETERIORATED END REGIONS OF PRESTRESSED CONCRETE BRIDGE GIRDERS

William Rich (10713612) 06 May 2021 (has links)
<div> <p>Due to harsh environmental conditions, the deterioration of prestressed concrete bridge girders is a commonly observed phenomenon in Indiana and much of the Midwest. Concordantly, one widely observed damage scenario is deteriorated end regions of prestressed concrete girders. Damaged or failed expansion joints expose prestressed concrete girder end regions to chloride-laden water, resulting in a corrosive environment in which reinforcement section loss and concrete spalling can occur. For bridges experiencing this type of deterioration, action is needed to ensure the structure remains safe and serviceable. As such, an experimental program was developed to investigate the effectiveness of three repair techniques in restoring the structural behavior of prestressed concrete bridge girders with end region deterioration. The three examined repair techniques are (i) an externally bonded fiber reinforced polymer (FRP) system, (ii) a near-surface-mounted (NSM) FRP system, and (iii) a concrete supplemental diaphragm. Additionally, installation procedures for the three end region repair techniques were developed. Results, conclusions, and recommendations from the experimental program are presented to help advise best practices for implementing end region repair techniques in the field. </p> </div> <br>

Page generated in 0.0396 seconds