Spelling suggestions: "subject:"bridge function"" "subject:"cridge function""
1 |
A TELEMETRY SYSTEM BASED ON GENERALIZED BRIDGE FUNCTIONXuefang, Rao, Qishan, Zhang 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The mathematics basis that can form a telemetry system is orthogonal functions. Three
kinds of orthogonal functions are used up to now. First of them is sine and cosine
function family. The second one is block pulse function family. The third one is Walsh
function family. Their corresponding telemetry systems are FDM, TDM and SDM
(CDM).
Later we introduced an orthogonal function which is called Bridge function. The
corresponding system is named telemetry system based on Bridge function.
Now a new kind of orthogonal function, Generalized Bridge function, has been found. It
can be applied to practical multiplex of information transmission. In this paper the author
provides the design concept, block diagram, operational principle and technical
realization of telemetry system based on Generalized Bridge function.
|
2 |
Puasono dvimatės lygties vidinių reikšmių uždavinio sprendimas „tilto“ funkcijų metodais / Solution of Poisson two-dimentional equation internal values' task by "brige" function approachesTutkienė, Simona 03 August 2011 (has links)
Magistro darbe matematiniu modeliavimu nagrinėjamas Puasono lygties sprendimo efektyvumas naujais metodais. Šiame darbe siūloma spręsti šias lygtis naudojant vadinamąsias „tilto“ funkcijas. Bandomos dviejų rūšių „tilto“ funkcijos: hiperbolinio tangento ir trigonometrinės. Puasono lygties sprendinys ieškomas per „tilto“ funkcijų ir polinomų sandaugų sumą. / In this study Poisson function is solved using “bridge” functions method, meaning that all range is divided to separate zones (“bridges”) and to separate approximation polynomial multiplied of “bridge” functions. Common solution is equal to the sum of separate polynomial multiplied of “bridge” functions. To solve Poisson equation, the so-called "bridge" function was used. Differential equation, the solution we were looking via the "bridge" functions and products of powers of polynomials amount.
|
Page generated in 0.0685 seconds