• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Behaviors of Historical Wrought Iron Truss Bridges – a Field Testing Case Study

Hedric, Andrew C. 12 1900 (has links)
Civil infrastructure throughout the world serves as main arteries for commerce and transportation, commonly forming the backbone of many societies. Bridges have been and remain a crucial part of the success of these civil networks. However, the crucial elements have been built over centuries and have been subject to generations of use. Many current bridges have outlived their intended service life or have been retrofitted to carry additional loads over their original design. A large number of these historic bridges are still in everyday use and their condition needs to be monitored for public safety. Transportation infrastructure authorities have implemented various inspection and management programs throughout the world, mainly visual inspections. However, careful visual inspections can provide valuable information but it has limitations in that it provides no actual stress-strain information to determine structural soundness. Structural Health Monitoring (SHM) has been a growing area of research as officials need to asses and triage the aging infrastructure with methods that provide measurable response information to determine the health of the structure. A rapid improvement in technology has allowed researchers to start using new sensors and algorithms to understand the structural parameters of tested structures due to known and unknown loading scenarios. One of the most promising methods involves the use of wireless sensor nodes to measure structural responses to loads in real time. The structural responses can be processed to help understand the modal parameters, determine the health of the structure, and potentially identify damage. For example, modal parameters of structures are typically used when designing the lateral system of a structure. A better understanding of these parameters can lead to better and more efficient designs. Usually engineers rely on a finite element analysis to identify these parameters. By observing the actual parameters displayed during field testing, the theoretical FE models can be validated for accuracy. This paper will present the field testing of a historic wrought iron truss bridge, in a case study, to establish a repeatable procedure to be used as reference for the testing of other similar structures.
2

Analytical and experimental investigations of bridge decks of composite construction

江鳳僑, Kong, F. K. January 1960 (has links)
published_or_final_version / Civil Engineering / Master / Master of Science in Engineering
3

On the Boundary Conditions and Internal Mechanics of Parallel Wire Strands

Brügger, Adrian January 2017 (has links)
This dissertation analyzes the internal mechanics of parallel wire strands as found in the main cables of suspension bridges. Parallel wire strands of reduced order (7-wire, 19-wire, and 61-wire strands made of steel and aluminum) are fabricated and subjected to various boundary conditions and external loads (tension, clamping, twist, etc.). Neutron diffraction is used as an elastic strain measurement tool for its ability to penetrate bulk materials and/or layers of a multi-body system without disturbing the sample. Firstly, this thesis aims to quantify the development length – the distance over which a broken wire within a strand regains near-full service strain – as a function of various boundary conditions and failure scenarios. The feasibility of using neutron diffractometers to measure in situ elastic strains on civil-engineering-scale samples under both tensile load and radial confinement is validated using strands fabricated from steel bridge wire. Results from various 7-wire strands indicate that friction and mechanical interference on the microscopic level play a significant role in the load partitioning. Furthermore, wires that have been broken – either pre-cracked or fractured live and in situ during tensile loading – are capable of regaining significant stresses from their neighbors over a distance of tens of centimeters. The contribution of both friction force and mechanical interference on elastic strain redevelopment in broken wires should be included in analytical models designed to simulate failure processes. The second part of this thesis aims to measure the internal mechanics of larger parallel wire strands in response to various confinement (clamping) forces. 19 and 61 aluminum wire strands are fabricated and the internal strains of all constituent wires mapped in three orthogonal directions under various clamping loads. The strain distributions for both 19-wire and 61-wire strands show a surprising degree of heterogeneity. An increase in clamping force homogenizes the distribution to a degree, but only at unfeasibly high clamping forces. The results suggest that microscale variations in wire diameter dominate the internal mechanics of parallel wire strands. The stochastic distribution of wire sizes due to manufacturing tolerances throughout a strand cross-section creates a randomly ordered network of over- and under-sized wires. This imperfectly packed lattice results in large wire-to-wire variations in clamping constraint. The up-scaling in strand size from 19 to 61 wires increases the resolution of the experiment but does not reduce the heterogeneity of the strain distribution. Ergo, the assumption of perfect hexagonal packing in parallel wire strands is weak, and mean field distributions do not accurately describe the internal mechanics of such structures.
4

Experimental and analytical investigation of the thermal behavior of a fiber reinforced polymeric bridge deck

Suchinda, Chatr 08 1900 (has links)
No description available.
5

Experimental tests of a seismic retrofit components on a full-scale model of a typical steel bridge in Mid-America

Pfeifer, Thomas A. 12 1900 (has links)
No description available.
6

Seismic analysis and retrofit of mid-America bridges

Choi, Eunsoo 05 1900 (has links)
No description available.
7

Fatigue reliability and optimal inspection strategies for steel bridges

Chung, Hsin-yang 16 February 2015 (has links)
Structural reliability techniques can be employed to evaluate the fatigue performance of fracture-critical members in steel bridges. In this dissertation, two fatigue reliability formulations that can be applied for most details in steel bridges are developed. For details classified according to AASHTO fatigue categories, a limit state function related to the number of stress cycles leading to failure based on Miner’s rule is used; for details not classified according to AASHTO fatigue categories, a limit state function based on linear elastic fracture mechanics and expressed in terms of crack size and growth rate is employed. With the application of fatigue reliability analysis, a procedure for inspection scheduling of steel bridges is developed to yield the optimal (most economical) inspection strategy that meets an acceptable safety level through the planned service life. This inspection scheduling problem is modeled as an optimization problem with an objective function that includes the total expected cost of inspection, repair, and failure formulated using an event tree approach, with appropriate constraints on the interval between inspections, and a specified minimum acceptable (target) safety level. With the help of several illustrations, it is shown that an optimal inspection scheduling plan can thus be developed for any specified fatigue details or fracture-critical sections in steel bridges. A second optimal inspection scheduling procedure is formulated that takes into consideration crack detectability (or quality) of alternative nondestructive inspection techniques. This procedure based on Monte Carlo simulation of crack growth curves yields an optimal inspection technique and associated schedule for a given fracture-critical member in a steel bridge for minimum cost and a target safety level while also taking into account probability of detection (POD) data for candidate nondestructive inspection techniques. Comparisons between the reliability-based procedure and the POD-based procedure for optimal inspection scheduling are discussed. Both scheduling strategies, when contrasted with ad hoc periodic inspection programs for steel bridges, are recommended because they are rational approaches that consider the actual fatigue reliability of the bridge member and account for economy as well as safety. / text
8

Strenghtening of reinforced concrete bridge decks with carbon fiber composites

Rubin, Ariel 08 1900 (has links)
No description available.
9

Acceptance criteria for fiber-reinforced polymeric bridge deck panels

Engindeniz, Murat 05 1900 (has links)
No description available.
10

Numerical simulation of a long span bridge response to blast loading

Tang, Edmond Kai Cheong January 2009 (has links)
[Truncated abstract] As a consequence of the increase in terrorist incidents, many comprehensive researches, both experimental and numerical modelling of structure and blast interaction, have been conducted to examine the behaviour of civilian structures under dynamic explosion and its impact. Nevertheless most of the works in literature are limited to response of simple structures such as masonry walls, reinforced concrete beams, columns and slabs. Although these studies can provide researchers and structural engineers a good fundamental knowledge regarding blast load effect, it is more likely for blast load to act upon entire structures in actual explosion events. The interaction between blast load and structures, as well as the interaction among structural members may well affect the structural response and damage. Therefore it is necessary to analyse more realistic reinforced concrete structures in order to gain an extensive knowledge on the possible structural response under blast load effect. Among all the civilian structures, bridges are considered to be the most vulnerable to terrorist threat and hence detailed investigation in the dynamic response of these structures is essential. This thesis focuses on the study of the response of a modern cable-stayed bridge under blast loadings. ... Firstly, analysis is conducted to examine the failure of four main components namely pier, tower, concrete back span and steel composite main span under close proximity dynamic impact of a 1000 kg TNT equivalent blast load. Secondly, based on such results, the remainder of the bridge structure is then tested by utilizing the loading condition specified in the US Department of Defence (DoD) guideline with the aim to investigate the possibility of bridge collapse after the damage of these components. It is found that failure of the vertical load bearing elements (i.e. pier and tower) will lead to catastrophic collapse of the bridge. Assuming that terrorist threat cannot be avoided, hence protective measures must be implemented into the bridge structure to reduce the damage induced by explosive blast impact and to prevent bridge from collapse. As such, a safe standoff distance is determined for both the pier and tower under the blast impact of 10000 kg TNT equivalent. This information would allow the bridge designer to identify the critical location for placing blast barriers for protection purpose. For the case of bridge deck explosion, carbon fibre reinforced polymer (CFRP) is employed to examine in respect of its effectiveness in strengthening the concrete structure against blast load. In this research, appropriate contact is employed for the numerical model to account for the epoxy resin layer between the CFRP and concrete. In addition, to ensure that the CFRP can perform to its full capacity, anchors are also considered in the numerical study to minimize the chance of debonding due to the weakening of the epoxy. The results reveal that although severe damage can still be seen for locations in close proximity to the explosive charge, the use of CFRP did reduce the dynamic response of the bridge deck as compared to the unprotected case scenario. Further investigation is also carried out to examine the change in damaged zone and global response through variation in CFRP thickness.

Page generated in 0.0746 seconds