• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiscale modeling of fracture and deformation in interface controlled materials

Brödling, Nils. January 2007 (has links)
Zugl.: Stuttgart, Univ., Diss., 2007.
2

Atomistic and continuum studies of deformation and failure in brittle solids and thin film systems

Buehler, Markus J. January 2004 (has links)
Zugl.: Stuttgart, Univ., Diss., 2004.
3

Aspects of energy minimization in solid mechanics evolution of microstructures and brittle crack propagation /

Gürses, Ercan, January 2007 (has links)
Zugl.: Stuttgart, Univ., Diss., 2007.
4

Rupture propagation of recent large TsE off-coast Sumatra and Java

Rößler, Dirk, Krüger, Frank, Ohrnberger, Matthias January 2007 (has links)
The spatio-temporal evolution of the three recent tsunamogenic earthquakes (TsE) off-coast N-Sumatra (Mw9.3), 28/03/2005 (Mw8.5) off-coast Nias, on 17/07/2006 (Mw7.7) off-coast Java. Start time, duration, and propagation of the rupture are retrieved. All parameters can be obtained rapidly after recording of the first-arrival phases in near-real time processing. We exploit semblance analysis, backpropagation and broad-band seismograms within 30°-95° distance. Image enhancement is reached by stacking the semblance of arrays within different directions. For the three events, the rupture extends over about 1150, 150, and 200km, respectively. The events in 2004, 2005, and 2006 had source durations of at least 480s, 120s, and 180s, respectively. We observe unilateral rupture propagation for all events except for the rupture onset and the Nias event, where there is evidence for a bilateral start of the rupture. Whereas average rupture speed of the events in 2004 and 2005 is in the order of the S-wave speed (≈2.5-3km/s), unusually slow rupturing (≈1.5 km/s) is indicated for the July 2006 event. For the July 2006 event we find rupturing of a 200 x 100 km wide area in at least 2 phases with propagation from NW to SE. The event has some characteristics of a circular rupture followed by unilateral faulting with change in slip rate. Fault area and aftershock distribution coincide. Spatial and temporal resolution are frequency dependent. Studies of a Mw6.0 earthquake on 2006/09/21 and one synthetic source show a ≈1° limit in resolution. Retrieved source area, source duration as well as peak values for semblance and beam power generally increase with the size of the earthquake making possible an automatic detection and classification of large and small earthquakes.
5

Modeling of realistic microstructures on the basis of quantitative mineralogical analyses

Klichowicz, Michael 30 November 2020 (has links)
Diese Forschung zielt darauf ab, den Einsatz realistischer Mineralmikrostrukturen in Mineralverarbeitungssimulationen Simulationen von Aufbereitungsprozessen zu ermöglichen. Insbesondere Zerkleinerungsprozesse, wie z.B. das Brechen und Mahlen von mineralischen Rohmaterialien, werden stark von der mineralischen Mikrostruktur beeinflusst, da die Textur und die Struktur der vielen Körner und ihre mikromechanischen Eigenschaften das makroskopische Bruchverhalten bestimmen. Ein Beispiel: Stellen wir uns vor, wir haben ein mineralisches Material, das im Wesentlichen aus Körnern zweier verschiedener Mineralphasen, wie Quarz und Feldspat, besteht. Wenn die mikromechanischen Eigenschaften dieser beiden Phasen unterschiedlich sind, wird sich dies wahrscheinlich auf das makroskopische Bruchverhalten auswirken. Unter der Annahme, dass die Körner eines der Minerale bei geringeren Belastungen brechen, ist es wahrscheinlich, dass sich ein Riss durch einen Stein dieses Materials durch die schwächeren Körner ausbreitet. Tatsächlich ist dies eine wichtige Eigenschaft für die Erzaufbereitung. Um wertvolle Mineralien aus einem Erz zu gewinnen, ist es wichtig, sie aus dem kommerziell wertlosen Material, in dem sie vorkommen, zu befreien. Dazu ist es wichtig zu wissen und zu verstehen, wie das Material auf Korngrößenebene bricht. Um diesen Bruch simulieren zu können, ist es wichtig, realistische Modelle der mineralischen Mikrostrukturen zu verwenden. Diese Studie zeigt, wie solche realistischen zweidimensionalen Mikrostrukturen auf der Grundlage der quantitativen Mikrostrukturanalyse am Computer erzeugt werden können. Darüber hinaus zeigt die Studie, wie diese synthetischen Mikrostrukturen dann in die gut etablierte Diskrete-Elemente-Methode integriert werden können, bei der der Bruch von mineralischem Material auf Korngrößenebene simuliert werden kann.:List of Acronyms VII List of Latin Symbols IX List of Greek Symbols XV 1 Introduction 1 1.1 Motivation for using realistic microstructures in Discrete Element Method (DEM) 1 1.2 Possibilities for using realistic mineral microstructures in DEM simulations . 4 1.3 Objective and disposition of the thesis . . . . . . . . . . . . . . . . . . . . 7 2 Background 9 2.1 Discrete Element Method (DEM) . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Fundamentals of the Discrete Element Method (DEM) . . . . . . . . 9 2.1.2 Applications of DEM in comminution science . . . . . . . . . . . . . 21 2.1.3 Limitations of DEM in comminution science . . . . . . . . . . . . . . 26 2.2 Quantitative Microstructural Analysis . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Fundamentals of the Quantitative Microstructural Analysis . . . . . . 29 2.2.2 Applied QMA in mineral processing . . . . . . . . . . . . . . . . . . 49 2.2.3 Applicability of the QMA for the synthesis of realistic microstructures 49 3 Synthesis of realistic mineral microstructures for DEM simulations 51 3.1 Development of a computer-assisted QMA for the analysis of real and synthetic mineral microstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 Fundamentals of the computer-assisted QMA . . . . . . . . . . . . 53 3.1.2 The requirements for the false-color image. . . . . . . . . . . . . . 54 3.1.3 The conversion of a given real mineral microstructure into a false-color image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.4 Implementation of the point, line, and area analysis . . . . . . . . . 59 3.1.5 Selection of appropriate QMA parameters for analyzing two-dimensional microstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.1.6 Summary of the principles of the adapted Quantitative Microstructural Analysis (QMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 Analysis of possible strategies for the microstructure synthesis . . . . . . . . 71 3.3 Implementation of the drawing method . . . . . . . . . . . . . . . . . . . . 76 3.3.1 Drawing of a single grain . . . . . . . . . . . . . . . . . . . . . . . 77 XVIII List of Greek Symbols 3.3.2 Drawing of multiple grains, which form a synthetic microstructure . . 81 3.3.3 Synthesizing mineral microstructures consisting of multiple phases . 85 3.4 The final program for microstructure analysis and synthesis . . . . . . . . . 89 3.4.1 Synthesis and analysis of an example microstructure . . . . . . . . . 90 3.4.2 Procedure for generating a realistic synthetic microstructure of a given real microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4 Validation of the synthesis approach 103 4.1 Methodical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.1.1 The basic idea of the validation procedure . . . . . . . . . . . . . . 103 4.1.2 The experimental realizations . . . . . . . . . . . . . . . . . . . . . 108 4.2 Basic indenter test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2.1 Considerations for the basic indenter test . . . . . . . . . . . . . . . 109 4.2.2 Realization and evaluation of the real basic indenter test . . . . . . . 114 4.2.3 Realization and evaluation of the simulated basic indenter test . . . 127 4.2.4 Conclusions on the basic indenter test . . . . . . . . . . . . . . . . . 138 4.3 Extended indenter test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.3.1 Basic considerations for the extended indenter test . . . . . . . . . . 139 4.3.2 Realization and evaluation of the real extended indenter test . . . . 142 4.3.3 Realization and evaluation of the simulated extended indenter test . 154 4.3.4 Conclusions on the extended indenter test . . . . . . . . . . . . . . 171 4.4 Particle bed test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4.4.1 Basic considerations for the particle bed test . . . . . . . . . . . . . 173 4.4.2 Realization and evaluation of the real particle bed test . . . . . . . . 176 4.4.3 Realization and evaluation of the simulated particle bed test . . . . . 188 4.4.4 Conclusions on the particle bed test . . . . . . . . . . . . . . . . . . 203 5 Conclusions and directions for future development 205 6 References 211 List of Figures 229 List of Tables 235 Appendix 237 / This research aims to make it possible to use realistic mineral microstructures in simulations of mineral processing. In particular, comminution processes, such as the crushing and grinding of raw mineral materials, are highly aff ected by the mineral microstructure, since the texture and structure of the many grains and their micromechanical properties determine the macroscopic fracture behavior. To illustrate this, consider a mineral material that essentially consists of grains of two diff erent mineral phases, such as quartz and feldspar. If the micromechanical properties of these two phases are diff erent, this will likely have an impact on the macroscopic fracture behavior. Assuming that the grains of one of the minerals break at lower loads, it is likely that a crack through a stone of that material will spread through the weaker grains. In fact, this is an important property for ore processing. In order to extract valuable minerals from an ore, it is important to liberate them from the commercially worthless material in which they are found. For this, it is essential to know and understand how the material breaks at grain-size level. To be able to simulate this breakage, it is important to use realistic models of the mineral microstructures. This study demonstrates how such realistic two-dimensional microstructures can be generated on the computer based on quantitative microstructural analysis. Furthermore, the study shows how these synthetic microstructures can then be incorporated into the well-established discrete element method, where the breakage of mineral material can be simulated at grain-size level.:List of Acronyms VII List of Latin Symbols IX List of Greek Symbols XV 1 Introduction 1 1.1 Motivation for using realistic microstructures in Discrete Element Method (DEM) 1 1.2 Possibilities for using realistic mineral microstructures in DEM simulations . 4 1.3 Objective and disposition of the thesis . . . . . . . . . . . . . . . . . . . . 7 2 Background 9 2.1 Discrete Element Method (DEM) . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Fundamentals of the Discrete Element Method (DEM) . . . . . . . . 9 2.1.2 Applications of DEM in comminution science . . . . . . . . . . . . . 21 2.1.3 Limitations of DEM in comminution science . . . . . . . . . . . . . . 26 2.2 Quantitative Microstructural Analysis . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Fundamentals of the Quantitative Microstructural Analysis . . . . . . 29 2.2.2 Applied QMA in mineral processing . . . . . . . . . . . . . . . . . . 49 2.2.3 Applicability of the QMA for the synthesis of realistic microstructures 49 3 Synthesis of realistic mineral microstructures for DEM simulations 51 3.1 Development of a computer-assisted QMA for the analysis of real and synthetic mineral microstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 Fundamentals of the computer-assisted QMA . . . . . . . . . . . . 53 3.1.2 The requirements for the false-color image. . . . . . . . . . . . . . 54 3.1.3 The conversion of a given real mineral microstructure into a false-color image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.4 Implementation of the point, line, and area analysis . . . . . . . . . 59 3.1.5 Selection of appropriate QMA parameters for analyzing two-dimensional microstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.1.6 Summary of the principles of the adapted Quantitative Microstructural Analysis (QMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 Analysis of possible strategies for the microstructure synthesis . . . . . . . . 71 3.3 Implementation of the drawing method . . . . . . . . . . . . . . . . . . . . 76 3.3.1 Drawing of a single grain . . . . . . . . . . . . . . . . . . . . . . . 77 XVIII List of Greek Symbols 3.3.2 Drawing of multiple grains, which form a synthetic microstructure . . 81 3.3.3 Synthesizing mineral microstructures consisting of multiple phases . 85 3.4 The final program for microstructure analysis and synthesis . . . . . . . . . 89 3.4.1 Synthesis and analysis of an example microstructure . . . . . . . . . 90 3.4.2 Procedure for generating a realistic synthetic microstructure of a given real microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4 Validation of the synthesis approach 103 4.1 Methodical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.1.1 The basic idea of the validation procedure . . . . . . . . . . . . . . 103 4.1.2 The experimental realizations . . . . . . . . . . . . . . . . . . . . . 108 4.2 Basic indenter test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2.1 Considerations for the basic indenter test . . . . . . . . . . . . . . . 109 4.2.2 Realization and evaluation of the real basic indenter test . . . . . . . 114 4.2.3 Realization and evaluation of the simulated basic indenter test . . . 127 4.2.4 Conclusions on the basic indenter test . . . . . . . . . . . . . . . . . 138 4.3 Extended indenter test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.3.1 Basic considerations for the extended indenter test . . . . . . . . . . 139 4.3.2 Realization and evaluation of the real extended indenter test . . . . 142 4.3.3 Realization and evaluation of the simulated extended indenter test . 154 4.3.4 Conclusions on the extended indenter test . . . . . . . . . . . . . . 171 4.4 Particle bed test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4.4.1 Basic considerations for the particle bed test . . . . . . . . . . . . . 173 4.4.2 Realization and evaluation of the real particle bed test . . . . . . . . 176 4.4.3 Realization and evaluation of the simulated particle bed test . . . . . 188 4.4.4 Conclusions on the particle bed test . . . . . . . . . . . . . . . . . . 203 5 Conclusions and directions for future development 205 6 References 211 List of Figures 229 List of Tables 235 Appendix 237

Page generated in 0.0536 seconds