Spelling suggestions: "subject:"bubble deformation"" "subject:"hubble deformation""
1 |
Permeability development and evolution in volcanic systems : insights from nature and laboratory experiments / Le développment et l’évolution de la pérmeabilité dans les systèmes volcaniques : évidences de la nature et du laboratoireKushnir, Alexandra Roma Larisa 27 June 2016 (has links)
La transition entre le comportement effusif et explosif des volcans de magma riche en silice est en partie contrôlée par la capacité des surpressions gazeuses à se dissiper hors du magma. La libération efficace des gaz est associée aux éruptions effusives tandis que la rétention de ces gaz contribue aux processus explosifs. L’une des approches pour évaluer la facilité d’échappement des gaz est de considérer l’évolution et le développement de la perméabilité dans la colonne magmatique et dans l'édifice. J'évalue dans ce travail de thèse le rôle des changements post-mise en place sur la microstructure dans des andésites basaltiques du Merapi (Indonésie). La perméabilité de ces roches est principalement contrôlée par des fissures liées à leur mise en place. Malgré l’influence importante de ces fissures post-mise en place pour dégazer à travers l'édifice, elles ne contribuent pas au dégazage intrinsique du magma en cours d’ascension. Pour s’affranchir de l'influence des microstructures post-mise en place du magma, j'étudie le développement et l'évolution in situ des réseaux perméables en déformant des magmas à deux phases (bulles de gaz et liquide silicaté) en cisaillement simple dans une presse Paterson selon des viscosités et des vitesses de déformation réalistes pour la partie haute des conduits des strato-volcans. Le développement de la perméabilité est confirmé in situ et se développe à des vitesses de déformation supérieures à 4,5 x 10⁻⁴ s⁻¹. À des vitesses de déformation élevées (> 5 x 10⁻⁴ s⁻¹) le magma est fragile et l’échappement du gaz est lente, facilitée par l'interconnexion de courtes fractures de Mode I. À des vitesses de déformation < 5 × 10⁻⁴ s⁻¹, le magma se comporte à la fois de manière fragile et visqueuse et la perméabilité se développe lorsque la déformation est importante; le gaz s’échappe rapidement par de longues fractures de Mode I bien développées. Les fractures de Mode I sont idéalement orientées pour le dégazage du conduit central et sont, surtout, soumises à peu de déformation jusqu'à ce qu'elles soient réorientées dans la direction de cisaillement. Ces caractéristiques de dégazage peuvent, à long terme, favoriser un dynamisme éruptif effussif. / The transition from effusive to explosive behaviour at silicic volcanoes is, in part, governed by how efficiently gas overpressures are dissipated from the volcanic plumbing. Efficient gas release is associated with effusive eruptions while inadequate outgassing contributes to explosive processes. One approach to assessing the facility of gas escape is by considering how permeability develops and evolves in the magma column and surrounding edifice. Here, I appraise the role of post-emplacement changes to microstructure in edifice-forming basaltic andesites from Merapi (Indonesia). The permeability of these rocks is dominantly crack-controlled and while these features exert important controls on gas escape through the edifice, they do not represent the escape pathways available to gas within ascending magma. To avoid the influence of postemplacement microstructure, I investigate the development and evolution of permeable networks in magmas by deforming initially impermeable two-phase magmas in simple shear. This is done in a Paterson apparatus at viscosities and shear strain rates appropriate to upper conduits in stratovolcanoes. Permeability development is confirmed in situ and develops at moderate to high shear strain rates (> 4.5 × 10⁻⁴ s⁻¹). At very high strain rates (> 5 × 10⁻⁴ s⁻¹) the magma behaves in a brittle manner and gas egress is slow, facilitated by the interconnection of short, Mode I fractures. At moderate shear strain rates (< 5 × 10⁻⁴ s⁻¹), the magma displays both brittle and viscous behaviour and permeability develops at high strain; gas escape is rapid owing to long, well-developed, sample-length Mode I fractures. Mode I fractures are ideally oriented for outgassing of the central conduit and, critically, accommodate little deformation until they are rotated into the direction of shear, making them long-lived outgassing features that may favour volcanic effusion.
|
2 |
3D-Euler-Euler modeling of adiabatic poly-disperse bubbly flows based on particle-center-averaging methodLyu, Hongmei 05 September 2022 (has links)
An inconsistency exists in bubble force models used in the standard Euler-Euler simulations. The bubble force models are typically developed by assuming that the forces act on the bubbles' centers of mass. However, in the standard Euler-Euler model, each bubble force is a function of the local gas volume fraction because the phase-averaging method is used. This inconsistency can lead to gas over-concentration in the center or near the wall of a channel when the bubble diameter is larger than the computational cell size. Besides, a mesh-independent solution may not exist in such cases. In addition, the bubble deformation is not fully considered in the standard Euler-Euler model. In this thesis, a particle-center-averaging method is used to represent the bubble forces as forces that act on the bubbles' centers of mass. A particle-center-averaged Euler-Euler approach for bubbly flow simulations is developed by combining the particle-center-averaged Euler-Euler framework with a Gaussian convolution method. The convolution method is used to convert the phase-averaged and the particle-center-averaged quantities. The remediation of the inconsistency in the standard Euler-Euler model by the particle-center-averaging method is demonstrated using a simplified two-dimensional test case.
Bubbly flows in different vertical pipes are used to validate the particle-center-averaged Euler-Euler approach. The bubbly flow simulation results for the particle-center-averaged Euler-Euler model and the standard Euler-Euler model are compared with experimental data. For monodisperse simulations, the particle-center-averaging method alleviates the over-predictions of the gas volume fraction peaks for wall-peaking cases and for finely dispersed flow case. Whereas, no improvement is found in the simulated gas volume fraction for center-peaking cases because the over-prediction caused by the inconsistency has been smoothed by the turbulent dispersion. Moreover, the axial gas and liquid velocities simulated with both Euler-Euler models are similar, which proves that the closure models for bubble forces and turbulence are correctly applied in the particle-center-averaged Euler-Euler model. For fixed polydisperse simulations, the particle-center-averaging method can also alleviate the over-prediction of the gas volume fraction peak in the center or near the wall of a pipe. The axial gas velocities simulated with both Euler-Euler models are about the same. Comparisons are also made for the simulation results of bubbly flows in a cylindrical bubble column and the experimental data. The gas volume fractions and the axial gas velocities simulated with both Euler-Euler models almost coincide with each other, which indicates that the sink and source terms for the continuity equations and the degassing boundary are set correctly in the particle-center-averaged Euler-Euler model.
An oblate ellipsoidal bubble shape is considered in the particle-center-averaged Euler-Euler simulations by an anisotropic diffusion. The influence of bubble shape on the simulation results of bubbly pipe flows is investigated. The results show that considering the oblate ellipsoidal bubble shape in simulations can further alleviate the over-predictions of the gas volume fraction peaks for wall peaking cases, but it has little influence on the gas volume fractions of center-peaking cases and the axial gas velocities.
|
Page generated in 0.0851 seconds