• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dynamics of Bubbles and Drops in the Presence of an Electric Field

Shyam Sunder, * January 2015 (has links) (PDF)
The present thesis deals with two-phase electrohydrodynamic simulations of bubble and droplet dynamics under externally applied electric fields. We used the Coupled Level-Set and Volume-of-fluid method (CLSVOF) and two different electrohydrody-namic formulations to study the process of bubble and drop formation from orifices and needles, the interactions of two conducting drops immersed in a dielectric medium, and the oscillations of sessile drops under two different ways of applying external elec-tric field. For the process of bubble formation in dielectric liquids due to the injection of air from submerged orifices and needles, we show that a non-uniform electric field pro-duces smaller bubbles while a uniform electric field changes only the bubble shape. We further explain the reason behind the bubble volume reduction under a non-uniform electric field. We show that the distribution of the electric stresses on the bubble inter-face is such that very high electric stresses act on the bubble base due to a non-uniform electric field. This causes a premature neck formation and bubble detachment lead-ing to the formation of smaller bubbles. We also observe that the non-uniform elec-tric stresses pull the bubble interface contact line inside the needle. With oscillatory electric fields, we show that a further reduction in bubble sizes is possible, but only at certain electric field oscillation frequencies. At other frequencies, bubbles bigger than those under a constant electric field of strength equal to the amplitude of the AC electric field, are produced. We further study the bubble oscillation modes under an oscillatory electric field. We implemented a Volume-of-fluid method based charge advection scheme which is charge conservative and non-diffusive. With the help of this scheme, we were able to simulate the electrohydrodynamic interactions of conducting-dielectric fluid pairs. For two conducting drops inside a dielectric fluid, we observe that they fail to coalesce when the strength of the applied electric field is beyond a critical value. We observe that the non-coalescence between the two drops occur due to the charge transfer upon drop-drop contact. The electric forces which initially bring the two drops closer, switch direction upon charge transfer and pull the drops away from each other. The factors governing the non-coalescence are the electric conductivity of the drop’s liquid which governs the time scale of charge transfer relative to the capillary time scale and the magnitude of the electric forces relative to the capillary and the viscous forces. Similar observations are recorded for the interactions of a charged conducting drop with an interface between a dielectric fluid and a conducting fluid which is the same as the drop’s liquid. For the case of a pendant conducting drop attached to a capillary and without any influx of liquid from the capillary, we observed that the drop undergoes oscillations at lower values of electric potential when subjected to a step change in the applied electric potential. At higher values of electric potential, we observed the phenomenon of cone-jet formation which results due to the accumulation of the electric charges and thus the electric forces at the drop tip. For the formation of a pendant conducting drops from a charged capillary due to liquid injection, we observed that the drops are elongated in presence of an electric field. This happens because the free charge which appears at the drop tip is attracted towards the grounded electrode. This also leads to the formation of elongated liquid threads which connect the drop to the capillary during drop detachment. We plotted the variation of total electric charge inside the drops with respect to time and found the charge increases steeply as the drop becomes elongated and moves towards the grounded electrode. For sessile drop oscillations under an alternating electric field, two different modes of operations are studied. In the so called ‘Contact mode’ case, the droplet is placed on a dielectric coated grounded electrode and the charged needle electrode remains in direct contact with the drop as it oscillates. In the ‘Non-contact mode’ case, the drop is placed directly on the grounded electrode and electric potential is applied to a needle electrode which now remains far from the drop. We show that the drop oscillations in the contact mode are caused by concentration of electric forces near the three phase contact line where the electric charge accumulates because of the repulsion from the needle. For the non-contact mode, we observe that the electric charge is attracted by the needle towards the drop apex resulting in a concentration of the electric forces in that region. So the drop oscillates due to the electric forces acting on a region near the drop tip. We also present the variation of the total electric charge inside the drop with respect to time for the two cases studied.
12

Diagnostika plazmatu generovaného ve vybraných konfiguracích elektrického výboje v kapalném prostředí / Plasma diagnostics of electric discharges generated in selected configurations in liquids

Vašíček, Michal January 2014 (has links)
My diploma thesis is focused on a comparison of direct-current and high frequency (15-80 kHz) electric discharge, which generates non-thermal plasma in water solution of sodium chloride. Mainly current-voltage and Lissajous charts are discussed in the first part of this thesis. These charts describe different discharge phases: electrolysis, bubble formation, discharge breakdown and discharge regular operation in a pin-hole of a dielectric barrier. Influence of frequency, electrolyte conductivity, thickness of the diaphragm (or length of the capillary) and pin-hole diameter on discharge breakdown and bubble generation was studied, too. Measurements were realized in a polycarbonate reactor with total volume of 110 ml, which was divided by a changeable polyacetal insulating wall. This wall divided the reactor into two approximately equal spaces with one stainless steel planar electrode in each part. The Shapal-MTM ceramic discs (thickness of 0.3–1.5 mm and diameter of the central pin-hole of 0.3-0.9 mm) were mounted in the centre of the insulating wall. Initial conductivity of sodium chloride solution was chosen within the interval of 100900 S/cm. The second part of my thesis compares an influence of the direct-current (DC) and high frequency (HF) power sources on physical solution properties (conductivity, pH and temperature) and generation of hydrogen peroxide. A plasma reactor with total volume of 4 l and with mixing set up was divided into two equal spaces with one planar platinum electrode in each part. Diaphragm with thickness of 0.6 mm and pin-hole diameter of 0.6 mm was installed in the middle of the separating wall. Experiment was held at discharge operation of 45 W for 40 minutes with both power sources. Detection of hydrogen peroxide was realised by using a titanium reagent forming a yellow complex, which was analysed by absorption spectroscopy. If HF discharge power is plotted as a function of applied frequency, exponential decrease of frequency with increasing power can be observed. Higher breakdown voltage is necessary for thicker dielectric barriers, on the other hand for bigger diameter of the pin-hole lower breakdown voltage and higher power is needed in DC as well as in HF regime. Breakdown voltage is decreased by the increasing conductivity in both regimes; due to more charge carriers in the higher conductivity lower breakdown voltage is needed. However frequency in HF regime and DC discharge power increases. HF discharge power is decreased by the increasing conductivity. Solution conductivity and temperature are increased by initial conductivity value in both discharge regimes. Solution pH drops to acidic conditions when HF or DC positive regime is applied due to the generation of reactive species and electrolysis (in DC regime). However solution becomes alkaline when DC negative regime is applied. Concentration of hydrogen peroxide is produced linearly when HF or DC negative regime is applied and it depends on initial solution conductivity.
13

Diagnostika diafragmového výboje ve vodných roztocích a jeho aplikace pro povrchovou úpravu nanomateriálů / Diagnostics of Diaphragm Discharge in Water Solutions and its Application for the Nanomaterials Surface Treatment

Dřímalková, Lucie January 2019 (has links)
The exact mechanism of the discharge in liquids ignition is not sufficiently known up to now. Although during the last years was achieved the great progress and overloading which some of them are written in this theoretical part of thesis. This thesis is divided into two experimental parts. When the first part deals with diagnostics of diaphragm discharge in electrolyte solutions and the second part is focused on its use for uncoiling (higher homogenization) of carbon nanotubes in solutions. In experiment 1, three different sized (4 l, 100 ml, 50 ml) diaphragm discharge configurations were used to diagnose diaphragm discharge in electrolyte solutions. Diagnostics is done through current and voltage waveforms with the addition of synchronized ICCD camera images that have been connected to a four-channel oscilloscope. The V-A characteristic can be described by three events occurring in the electrolyte solution with a gradual increase in voltage. Slowly increasing of the voltage in the solution leads first to electrolysis. The next phase is the formation of microbubbles or bubbles, which is characteristic of the curve by a slight decrease in the increase of the current passing between electrodes. The sudden increase in the current flow is characteristic of the last phase, namely the discharge phase. The distance of the electrodes from the diaphragm does not significantly affect the V-A characteristic. The higher diameter of the pin hole, therefore, has a higher voltage, but this does not affect the origin of bubble generation or breakdown. The higher thickness of diaphragm, the higher voltage is needed to the beginning of the bubbles generation, and consequently the discharge breakdown. Comparison of the voltage of the start generation of the bubbles and breakdown for PET diaphragms and diaphragms from the ceramic there was no mark able difference. One of the most important parameters is the conductivity of the electrolyte solution. The lower voltage is needed for the start generation of the bubbles at the higher solution conductivity, and also the discharge generation is observed at a lower breakdown voltage. The second experimental part is focused on the study of the diaphragm discharge effect on carbon nanotubes. A specially designed U-shaped reactor is used to modify carbon nanoparticles. Tap water and aqueous solutions of organic compounds are used as the electrolytic solutions. The discharge is generated by a non-pulsed DC high source with a voltage in the range of 0-2.8 kV supplied to platinum electrodes located in the electrolyte solution. The experimental results have shown that the diaphragm discharge has positive effects on the disintegration of clusters and agglomerates of carbon nanotubes. The primary effect on disintegration is probably the shock waves generated by the discharge. It turned out that it depends on the electrode configuration, where the treatment in anode space has far greater effects than the treatment in cathode half of the reactor. Effects of carbon nanotubes disintegration in solution are long-lasting and the treatment effect is not loosed after several months. There were detected no significant changes in the structure of plasma-treated nanotubes by Infra-red spectroscopy.
14

Numerical Methods for Modeling Dynamic Features Related to Solid Body Motion, Cavitation, and Fluid Inertia in Hydraulic Machines

Zubin U Mistry (17125369) 12 March 2024 (has links)
<p dir="ltr">Positive displacement machines are used in various industries spanning the power spectrum, from industrial robotics to heavy construction equipment to aviation. These machines should be highly efficient, compact, and reliable. It is very advantageous for designers to use virtual simulations to design and improve the performance of these units as they significantly reduce cost and downtime. The recent trends of electrification and the goal to increase power density force these units to work at higher pressures and higher rotational speeds while maintaining their efficiencies and reliability. This push means that the simulation models need to advance to account for various aspects during the operation of these machines. </p><p dir="ltr">These machines typically have several bodies in relative motion with each other. Quantifying these motions and solving for their effect on the fluid enclosed are vital as they influence the machine's performance. The push towards higher rotational speeds introduces unwanted cavitation and aeration in these units. To model these effects, keeping the design evaluation time low is key for a designer. The lumped parameter approach offers the benefit of computational speed, but a major drawback that comes along with it is that it typically assumes fluid inertia to be negligible. These effects cannot be ignored, as quantifying and making design considerations to negate these effects can be beneficial. Therefore, this thesis addresses these key challenges of cavitation dynamics, body dynamics, and accounting for fluid inertia effects using a lumped parameter formulation.</p><p dir="ltr">To account for dynamics features related to cavitation, this thesis proposes a novel approach combining the two types of cavitation, i.e., gaseous and vaporous, by considering that both vapor and undissolved gas co-occupy a spherical bubble. The size of the spherical bubble is solved using the Rayleigh-Plesset equation, and the transfer of gas through the bubble interface is solved using Henry's Law and diffusion of the dissolved gas in the liquid. These equations are coupled with a novel pressure derivative equation. To account for body dynamics, this thesis introduces a novel approach for solving the positions of the bodies of a hydraulic machine while introducing new methods to solve contact dynamics and the application of Elasto Hydrodynamic Lubrication (EHL) friction at those contact locations. This thesis also proposes strategies to account for fluid inertia effects in a lumped parameter-based approach, taking as a reference an External Gear Machine. This thesis proposes a method to study the effects of fluid inertia on the pressurization and depressurization of the tooth space volumes of these units. The approach is based on considering the fluid inertia in the pressurization grooves and inside the control volumes with a peculiar sub-division. Further, frequency-dependent friction is also modeled to provide realistic damping of the fluid inside these channels.</p><p dir="ltr">To show the validity of the proposed dynamic cavitation model, the instantaneous pressure of a closed fluid volume undergoing expansion/compression is compared with multiple experimental sources, showing an improvement in accuracy compared to existing models. This modeling is then further applied to a gerotor machine and validated with experiments. Integrating this modeling technique with current displacement chamber simulation can further improve the understanding of cavitation in hydraulic systems. Formulations for body dynamics are tested on a prototype Gerotor and Vane unit. For both gerotor and vane units, comparisons of simulation results to experimental results for various dynamic quantities, such as pressure ripple, volumetric, and hydromechanical efficiency for multiple operating conditions, have been done. Extensive validation is performed for the case of gerotors where shaft torque ripple and the motion of the outer gear is experimentally validated. The thesis also comments on the distribution of the different torque loss contributions. The model for fluid inertia effects has been validated by comparing the lumped parameter model with a full three-dimensional Navier Stokes solver. The quantities compared, such as tooth space volume pressures and outlet volumetric flow rate, show a good match between the two approaches for varying operating speeds. A comparison with the experiments supports the modeling approach as well. The thesis also discusses which operating conditions and geometries play a significant role that governs the necessity to model such fluid inertia effects in the first place.</p>

Page generated in 0.0809 seconds