Spelling suggestions: "subject:"droplet clynamics"" "subject:"droplet ctynamics""
1 |
Droplet dynamics in mini-channel steam flow condensationChen, Xi January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Melanie M. Derby / Power plants are significant water users, accounting for 15% of water withdrawals worldwide. To reduce water usage, compact condensers are required to enable air-cooled condensers and reduce infrastructure costs. Steam flow condensation was studied in 0.952-mm and 1.82-mm hydraulic diameter mini-gaps in an open loop experimental apparatus. The apparatus was validated with single-phase flow. Flow condensation experiments were conducted for a wide range of steam mass fluxes (i.e., 35–100 kg/m²s) and qualities (i.e., 0.2–0.9) in hydrophilic copper and hydrophobic Teflon-coated channels. Water contact angles were 70° and 110° on copper and Teflon, respectively, and in general, filmwise condensation was the primary condensation mode in the hydrophilic channel and dropwise condensation was the primary mode observed in the hydrophobic channel. Pressure drops were reduced by 50–80% in the hydrophobic channels. Condensation heat transfer was enhanced by 200–350% in hydrophobic mini-gaps over hydrophilic mini-gap due to dropwise condensation. Droplet dynamics (e.g., nucleation, coalescence and departure) were quantified during dropwise condensation. A model was created which includes droplet adhesion and drag forces for droplet departure diameters which were then correlated to heat transfer coefficients. An overall mean absolute error of 9.6% was achieved without curve fitting. Noncondensable gases can reduce heat transfer in industrial systems, such as power plants due to the additional layer of thermal resistance from the gas. Condensing steam-nitrogen experiments were conducted for nitrogen mass fractions of 0–30%; the addition of nitrogen reduced heat transfer coefficients by up to 59% and 30% in hydrophilic and hydrophobic mini-gaps, respectively. It was found that during dropwise condensation, the noncondensable layer was perturbed by cyclical droplet motion, and therefore heat transfer coefficients were increased by 2–5 times compared with filmwise condensation of the same mass fraction of nitrogen.
|
2 |
Study on lipid droplet dynamics in live cells and fluidity changes in model bacterial membranes using optical microscopy techniquesWong, Christine Shiang Yee January 2014 (has links)
In this thesis optical microscopy techniques are used to consider aspects of viral and bacterial infections. In part 1, the physical effects of cytomegalovirus on lipid droplet dynamics in live cells are studied; in part 2, the effects of an antimicrobial peptide on the fluidity of model bacterial membranes are studied. The optical microscopy techniques used to study the effects of murine-cytomegalovirus (mCMV) on lipid droplets in live NIH/3T3 fibroblast cells in real-time are coherent anti- Stokes Raman scattering (CARS), two-photon fluorescence (TPF) and differential interference contrast (DIC) microscopies. Using a multimodal CARS and TPF imaging system, the infection process was monitored by imaging the TPF signal caused by a green fluorescent protein (GFP)-expressing strain of mCMV, where the amount of TPF detected allowed distinct stages of infection to be identified. Meanwhile, changes to lipid droplet configuration were observed using CARS microscopy. Quantitative analysis of lipid droplet numbers and size distributions were obtained from live cells, which showed significant perturbations as the infection progressed. The CARS and TPF images were acquired simultaneously and the experimental design allowed incorporation of an environmental control chamber to maintain cell viability. Photodamage to the live cell population was also assessed, which indicated that alternative imaging methods must be adopted to study a single cell over longer periods of time. To this end, DIC microscopy was used to study the lipid droplet dynamics, allowing lipid droplet motion to be tracked during infection. In this way, the effects of viral infection on the mobility and arrangement of the lipid droplets were analysed and quantified. It was found that the diffusion coefficient of the lipid droplets undergoing diffusive motion increased, and the droplets undergoing directed motion tended to move at greater speeds as the infection progressed. In addition, the droplets were found to accumulate and cluster in infected cells. The second part of this thesis presents a study on the effects of an antimicrobial peptide on model bacterial membranes. Giant unilamellar vesicles (GUVs) were produced as a simple model of E. Coli membrane using a 3:1 mixture of DPPC and POPG lipids. Incorporating Laurdan fluorescent dye into the lipid membrane of the GUVs allowed the membrane fluidity to be probed and visualised using TPF microscopy, whereby the fluidity was quantified by determining the general polarization (GP) values. Studying GUVs comprising single lipid and mixed lipid compositions over a temperature range from 25 C to 55 C enabled the lipid phase bands to be identified on the basis of GP value as gel phase and liquid crystalline phase. As such, the changes in lipid phase as a result of interaction with AMP were quantified, and phase domains were identified. It was found that the amount of liquid crystalline phase domains increased significantly as a result of AMP interaction.
|
3 |
Colliding Drops in Spray DryersEnuguri, Venkata Kotaiah Shiva Teja, Karra, Sri Harsha January 2018 (has links)
Spray drying is a process, which produces powders from the fluid state. This type of process is mostly used in the industrial sector. In this process, a liquid slurry is atomized, forming droplets, which are dried with hot air. During spray drying these droplets will interact and upon impact can show different types of interactions; droplet-droplet collisions as well as interactions with partially or completely dried particles, leading to agglomeration. The result of collision gives properties of the dried powder. The focus of the thesis is to investigate the droplet-droplet collision outcomes of WPC 80 (Whey Protein Concentrate 80) and Lactose. Then the effects of the absolute droplet diameter and the droplet diameter ratios are to be determined. Existing experimental setup and Image Processing Tool of MATLAB is used to study the collision outcome. The outcomes are shown in a regime map. The present results are compared with different products result and literature study. It is observed that there is an effect on collision outcome for different droplet size ratios and no effect for absolute droplet diameter.
|
4 |
Multiphase Flows with Digital and Traditional MicrofluidicsNilsson, Michael Andrew 01 May 2013 (has links)
Multi-phase fluid systems are an important concept in fluid mechanics, seen every day in how fluids interact with solids, gases, and other fluids in many industrial, medical, agricultural, and other regimes. In this thesis, the development of a two-dimensional digital microfluidic device is presented, followed by the development of a two-phase microfluidic diagnostic tool designed to simulate sandstone geometries in oil reservoirs. In both instances, it is possible to take advantage of the physics involved in multiphase flows to affect positive outcomes in both.
In order to make an effective droplet-based digital microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. For planar or open microfluidic devices, many of these processes have yet to be demonstrated. A suitable platform for an open system is a superhydrophobic surface, as suface characteristics are critical. Great efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water, and which allow for high droplet mobility. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. We use these surfaces to characterize droplet coalescence, mixing, motion, deflection, positioning, and sorting. This research culminates with the presentation of two digital microfluidic devices: a droplet reactor/analyzer and a droplet sorter.
As global energy usage increases, maximizing oil recovery from known reserves becomes a crucial multiphase challenge in order to meet the rising demand. This thesis presents the development of a microfluidic sandstone platform capable of quickly and inexpensively testing the performance of fluids with different rheological properties on the recovery of oil. Specifically, these microfluidic devices are utilized to examine how shear-thinning, shear-thickening, and viscoelastic fluids affect oil recovery. This work begins by looking at oil displacement from a microfluidic sandstone device, then investigates small-scale oil recovery from a single pore, and finally investigates oil displacement from larger scale, more complex microfluidic sandstone devices of varying permeability. The results demonstrate that with careful fluid design, it is possible to outperform current commercial additives using the patent-pending fluid we developed. Furthermore, the resulting microfluidic sandstone devices can reduce the time and cost of developing and testing of current and new enhanced oil recovery fluids.
|
5 |
Characterization of Low Weber Number Post-Impact Drop-Spread Dynamics by a Damped Harmonic System ModelGande, Sandeep K. 26 September 2011 (has links)
No description available.
|
6 |
Dynamics of Droplets Under Support, Acoustic And/Or Ambient Flow ExcitationDeepu, P January 2013 (has links) (PDF)
The first step on the way to understanding the complicated dynamics of spray is to study the behavior of isolated droplets. In many industrial and natural processes such as turbulent combustion, agricultural sprays, spray cooler, falling raindrops and cloud evolution the droplet is subjected to a chaotic unsteady external flow field. The interaction between the liquid and gaseous phases results in very intricate droplet dynamics like capillary instabilities, atomization, droplet collision and coalescence and vaporization, to name a few.
In this dissertation, the focus is on shape oscillations, atomization and vaporization dynamics of pendant and sessile droplets. A droplet residing on a substrate which vibrates vertically at ultrasonic frequency will exhibit different modes of shape oscillation. The competition between capillary forces and inertia forces is basically responsible for these oscillations. However, when an acoustic force field is introduced asymmetrically around the droplet, we discover with the help of ultra high-speed imaging, a new droplet spreading phase. This new method of droplet manipulation could nd application in micro fluidics and lab-on-a-chip systems. By lading the droplet with nanoparticles, the spreading rate can be easily controlled. The spreading phase is followed by an atomization phase where surface ligaments grow to disintegrate into daughter droplets; the intensity of atomization is found to decrease with increase in fluid viscosity. The ability to control atomization characteristics of droplets by lading them with nanoparticles is a powerful technique that may be implemented in spray coolers and combustors to control the spray characteristics or combustion efficiency. Both the spreading and ligament dynamics have been theoretically simulated and the physics behind the observed trends is explained. The growth rate of the ligaments is found to be governed by Weber number modified to include the acoustic pressure level of the standing wave. The frequency of ligament breakup is found to decrease with fluid viscosity and this observation is adequately supported by a theory developed based on the evolution crater on the droplet surface.
Turning now to the pendant droplets, by decomposing the droplet shape into Legendre modes, the shape oscillations exhibited by a droplet hanging from the junction of cross-wire placed at the center of an air jet is studied. Both high-speed imaging and hot-wire anemometry are employed. The driving force of oscillation of droplets subjected to the air jet is proved to be the inherent pressure fluctuations in the jet. The effect of surface tension, viscosity and Reynolds number on the shape oscillation level has been examined. The first experimental evidence of viscous attenuation of lower frequencies in a particular mode in glycerol/water mixture is reported. A theoretical model was developed to simulate the droplet shape oscillations induced by different ambient flow fields like pulsatile flow, vortical flow and flow with broadband energy spectrum. The time of interaction of the droplet with an eddy in the flow is found to be very crucial in determining the amplitude of oscillation of the droplet. The shorter the interaction time, the higher are the chances of the droplet oscillation being pushed into resonance.
Finally, the heat transfer and droplet regression dynamics of pendant droplets in a hot air stream of various chemical compositions (like conventional fuels, alternative fuels and nanosuspensions) have been experimentally analyzed using high speed imaging. The droplet is deployed at the junction of cross-wire at the centre of a vertical air jet. A hybrid timescale has been proposed which incorporates the effects of latent heat of vaporization, saturation vapor pressure and thermal diffusivity. This timescale in essence encapsulates the different parameters that influence the droplet vaporization rate. The analysis further permitted the evaluation of the effect of various parameters such as surrounding temperature, Reynolds number, far-field vapor presence, impurity content and agglomeration dynamics (nanosuspensions) in the droplet.
|
7 |
Impact of interfacial rheology on droplet dynamicsNatasha Singh (15082105) 04 April 2023 (has links)
<p>Droplet dispersions with adsorbed exotic surface active species (proteins, fatty alcohol, fatty acids, solid particulates, lipids, or polymers) find an immense number of applications in the field of engineering and bioscience. Interfacial rheology plays an essential role in the dynamics of many of these systems, yet little is understood about how these effects alter droplet dynamics. Most surfactants studied historically have been simple enough that the droplet dynamics can be described by Marangoni effects (surfactant concentration gradients), surface dilution, and adsorption/desorption kinetics without including the intrinsic surface rheology. One of the challenges in examining droplet systems with complex interfaces is that the intrinsic rheological effects are strongly coupled with surfactant transport effects (surface convection, diffusion, dilution and adsorption/desorption). The surface rheology can impact the ability of surfactant to transport along the surface, while surfactant transport can alter the surface rheology by changing the surface concentration. In this work, we develop axisymmetric boundary-integral simulations that allow us to quantitatively explore the combined effect of intrinsic surface rheology and surfactant transport on droplet dynamics in the Stokes flow limit. We assume that the droplet interface is predominantly viscous and that the Boussinesq Scriven constitutive relationship describes the properties of the viscous membrane. The key questions that we address in this work are:</p>
<p><br></p>
<ul>
<li>How do viscous membranes impact droplet deformation, breakup and relaxation? </li>
</ul>
<p> When a droplet is placed under external flow, it can either attain a stable shape under flow or stretch indefinitely above a critical flow rate and break apart. In this topic, we first discuss the breakup conditions for a droplet suspended in an unbounded immiscible fluid under a general linear flow field using perturbation theories for surface viscosity in the limit of small droplet deformation. We neglect the inhomogeneity in surfactant concentration and surface tension for this part. We find that the surface shear/dilational viscosity increases/decreases the critical capillary number for droplet breakup compared to a clean droplet at the same capillary number and droplet viscosity ratio value. In the second part of this topic, we solve the problem using boundary integral simulations for the case of axisymmetric extensional flow. Numerically solving this problem allows us to examine the effect of Marangoni stresses, pressure thickening/thinning surface viscosities, and stronger flows. We compare the droplet breakup results from our simulations to results from second-order perturbation theories. We present the physical mechanism behind our observations using traction arguments from interfacial viscosities. We conclude this topic by examining the combined role of surface viscosity and surfactant transport on the relaxation of an initially extended droplet in a quiescent external fluid.</p>
<p><br></p>
<ul>
<li>How do viscous membranes alter droplet sedimentation?</li>
</ul>
<p> When an initially deformed droplet sediment under gravity, it can either revert to a spherical shape or undergo instability where the droplet develops a long tail or cavity at its rear end. Here, we use numerical simulations to discuss how interfacial viscosity alters the breakup criterion and the formation of threads/cavities under gravity. We examine the combined influence of intrinsic surface viscosity and surfactant transport on droplet stability by assuming a linear dependence of surface tension on surfactant concentration and an exponential dependence of interfacial viscosities on surface pressure. We find that surface shear viscosity inhibits the tail/cavity growth at the droplet’s rear end and increases the critical capillary number compared to a clean droplet. In contrast, surface dilational viscosity promotes tail/cavity growth and lowers the critical capillary number compared to a clean droplet.</p>
<p><br></p>
<ul>
<li>How do viscous membranes affect droplet coalescence?</li>
</ul>
<p> When two droplets approach under external flow, a thin film is formed between the two droplets. Here, we develop numerical simulations to model the full coalescence process from the collision of two droplets under uniaxial compressional flow to the point where the film approaches rupture. We investigate the role of interfacial viscosity on the film profiles and drainage time. We observe that both surface shear and dilational viscosity significantly delay the film drainage time relative to a clean droplet. Interestingly, we find that the film drainage behaviour of a droplet with surface viscosity is not altered by the relative ratio of shear to dilational viscosity but rather depends on the sum of shear and dilational Boussinesq numbers. This is in contrast to the effect of surface viscosity observed in the previous processes (droplet breakup and sedimentation), where surface shear viscosity increases the critical capillary number compared to a clean droplet, while surface dilatational viscosity has the opposite effect.</p>
|
8 |
Dynamics of Bubbles and Drops in the Presence of an Electric FieldShyam Sunder, * January 2015 (has links) (PDF)
The present thesis deals with two-phase electrohydrodynamic simulations of bubble and droplet dynamics under externally applied electric fields. We used the Coupled Level-Set and Volume-of-fluid method (CLSVOF) and two different electrohydrody-namic formulations to study the process of bubble and drop formation from orifices and needles, the interactions of two conducting drops immersed in a dielectric medium, and the oscillations of sessile drops under two different ways of applying external elec-tric field.
For the process of bubble formation in dielectric liquids due to the injection of air from submerged orifices and needles, we show that a non-uniform electric field pro-duces smaller bubbles while a uniform electric field changes only the bubble shape. We further explain the reason behind the bubble volume reduction under a non-uniform electric field. We show that the distribution of the electric stresses on the bubble inter-face is such that very high electric stresses act on the bubble base due to a non-uniform electric field. This causes a premature neck formation and bubble detachment lead-ing to the formation of smaller bubbles. We also observe that the non-uniform elec-tric stresses pull the bubble interface contact line inside the needle. With oscillatory electric fields, we show that a further reduction in bubble sizes is possible, but only at certain electric field oscillation frequencies. At other frequencies, bubbles bigger than those under a constant electric field of strength equal to the amplitude of the AC electric field, are produced. We further study the bubble oscillation modes under an oscillatory electric field.
We implemented a Volume-of-fluid method based charge advection scheme which is charge conservative and non-diffusive. With the help of this scheme, we were able to simulate the electrohydrodynamic interactions of conducting-dielectric fluid pairs. For two conducting drops inside a dielectric fluid, we observe that they fail to coalesce when the strength of the applied electric field is beyond a critical value. We observe that the non-coalescence between the two drops occur due to the charge transfer upon drop-drop contact. The electric forces which initially bring the two drops closer, switch direction upon charge transfer and pull the drops away from each other. The factors governing the non-coalescence are the electric conductivity of the drop’s liquid which governs the time scale of charge transfer relative to the capillary time scale and the magnitude of the electric forces relative to the capillary and the viscous forces. Similar observations are recorded for the interactions of a charged conducting drop with an interface between a dielectric fluid and a conducting fluid which is the same as the drop’s liquid.
For the case of a pendant conducting drop attached to a capillary and without any influx of liquid from the capillary, we observed that the drop undergoes oscillations at lower values of electric potential when subjected to a step change in the applied electric potential. At higher values of electric potential, we observed the phenomenon of cone-jet formation which results due to the accumulation of the electric charges and thus the electric forces at the drop tip. For the formation of a pendant conducting drops from a charged capillary due to liquid injection, we observed that the drops are elongated in presence of an electric field. This happens because the free charge which appears at the drop tip is attracted towards the grounded electrode. This also leads to the formation of elongated liquid threads which connect the drop to the capillary during drop detachment. We plotted the variation of total electric charge inside the drops with respect to time and found the charge increases steeply as the drop becomes elongated and moves towards the grounded electrode.
For sessile drop oscillations under an alternating electric field, two different modes of operations are studied. In the so called ‘Contact mode’ case, the droplet is placed on a dielectric coated grounded electrode and the charged needle electrode remains in direct contact with the drop as it oscillates. In the ‘Non-contact mode’ case, the drop is placed directly on the grounded electrode and electric potential is applied to a needle electrode which now remains far from the drop. We show that the drop oscillations in the contact mode are caused by concentration of electric forces near the three phase contact line where the electric charge accumulates because of the repulsion from the needle. For the non-contact mode, we observe that the electric charge is attracted by the needle towards the drop apex resulting in a concentration of the electric forces in that region. So the drop oscillates due to the electric forces acting on a region near the drop tip. We also present the variation of the total electric charge inside the drop with respect to time for the two cases studied.
|
9 |
A Numerical Study of Droplet Dynamics in Viscoelastic FlowsArun, Dalal Swapnil January 2016 (has links) (PDF)
The polymers are integral part of vast number of products used in day to day life due to their anomalous viscoelastic behaviour. The remarkable flow behaviour exhibited by the polymeric fluids including rod climbing, extrudate swell, tube-less siphon, viscoelastic jet, elastic recoil and sharkskin instability is attributed to the complex microstructures in the polymeric liquids that arise due to the interactions of long chain polymer molecules with each other and with the surrounding fluid particles. The significance of polymer in transportation, packaging, pharmaceutical, chemical, biomedical, textiles, food and polymer processing industries highlights the requirement to comprehend the complex rheology of polymeric fluids.
First, we investigate the flow features exhibited by different shear thinning vis-coelastic fluids in rectangular cavities over a wide range of depth to width ratio. We have developed a viscoelastic flow solver in order to perform numerical simulations of highly elastic flow of viscoelastic fluids. In particular, we discuss the simulations of flows of constant viscosity Boger and shear thinning viscoelastic fluids in the complex flow problems using different constitutive equations. The effects of elasticity and inertia on the flow behaviour of two shear thinning vis-coelastic fluids modeled using Giesekus and linear PTT constitutive equations in rectangular cavities is studied. The size of the primary eddies and critical aspect ratio over which the corner eddies merge to yield a second primary eddy in deep cavities is discussed. We demonstrate that the flow in the shallow and deep cavities can be characterized using Weissenberg number, defined based on the shear rate, and Deborah number, specified based on the convective time scale, respectively. The study of flow in driven cavities is important in understanding of the mixing process during synthesis of blends and composites.
Next, we study two phase polymeric flow in confined geometries. Nowadays, polymer processing industries prefer to develop newer polymer with the desired material properties mechanically by mixing and blending of different polymer components instead of chemically synthesizing fresh polymer. The microstructure of blends and emulsions following drop deformation, breakup and coalescence during mixing determines its macroscopic interfacial rheology. We developed a two phase viscoelastic flow solver using volume conserving sharp interface volume-of-fluid (VOF) method for studying the dynamics of single droplet subjected to the complex flow fields.
We investigated the effects of drop and matrix viscoelasticity on the motion and deformation of a droplet suspended in a fully developed channel flow. The flow behaviour exhibited by Newtonian-Newtonian, viscoelastic-Newtonian, Newtonian-viscoelastic and viscoelastic-viscoelastic drop-matrix systems is presented. The difference in the drop dynamics due to presence of constant viscosity Boger fluid and shear thinning viscoelastic fluid is represented using FENE-CR and linear PTT constitutive equations, respectively. The presence of shear thinning viscoelastic fluid either in the drop or the matrix phase suppresses the drop deformation due to stronger influence of matrix viscoelasticity as compared to the drop elasticity. The shear thinning viscoelastic drop-matrix system further restricts the drop deformation and it displays non-monotonic de-formation. The constant viscosity Boger fluid droplet curbs the drop deformation and exhibits flow dynamics identical to the shear thinning viscoelastic droplet, thus indicating that the nature of the drop viscoelasticity has little influence on the flow behaviour. The matrix viscoelasticity due to Boger fluid increases drop deformation and displays non-monotonic deformation. The drop deformation is further enhanced in the case of Boger fluid in viscoelastic drop-matrix system. Interestingly, the pressure drop due to the presence of viscoelastic drop in a Newtonian matrix is lower than the single phase flow of Newtonian fluid. We also discuss the effects of inertia, surface tension, drop to matrix viscosity ratio and the drop size on these drop-matrix systems.
Finally, we investigate the emulsion rheology by studying the motion of a droplet in the square lid driven cavity flow. The viscoelastic effects due to constant viscosity Boger fluid and shear thinning viscoelastic fluid are illustrated using FENECR and Giesekus rheological relations, respectively. The presence of viscoelasticity either in drop or matrix phase boosts the drop deformation with the drop viscoelasticity displaying intense deformation. The drop dynamics due to the droplet viscoelasticity is observed to be independent of the nature of vis-coelastic fluid. The shear thinning viscoelastic matrix has a stronger influence on the drop deformation and orientation compared to the Boger fluid matrix. The different blood components, cells and many materials of industrial importance are viscoelastic in nature. Thus, the present study has significant applications in medical diagnostics, drug delivery, manufacturing and processing industries, study of biological flows, pharmaceutical research and development of lab-on-chip devices.
|
10 |
Fundamentals of Liquid Interactions with Nano/Micro Engineered Surfaces at Low TemperaturesRaiyan, Asif 28 August 2019 (has links)
No description available.
|
Page generated in 0.0706 seconds