• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimating Evapotranspiration Using the Complementary Relationship and the Budyko Framework

Kim, Homin 01 December 2017 (has links)
Land surface actual evapotranspiration (ET) is an important process in terrestrial water balance and reliable estimates of ET are necessary to improve water resources management. In this regard, there is a growing body of literature that recognizes the importance of an accurate ET model. Among them, the complementary relationship between ET and potential ET (ETP) has been the subject of many studies because it uses only meteorological data as inputs. However, there is an increasing concern that some complementary relationship models perform poorly under dry conditions. To overcome this limitation, this dissertation was designed to extend the latest complementary relationship model, Modified GG, using both meteorological data and vegetation information, NDVI, which is readily available from remote sensing data. The proposed model, Adjusted GG-NDVI, was validated by comparing to other ET models and measured ET data. With Adjusted GG-NDVI, this dissertation addressed the applicability of using ET as a proxy for drought monitoring. As a result, the drought patterns from the proposed drought index, EWDI, were consistent with commonly used USDM in the United States. More importantly, this study described drought conditions by comprehensively considering both precipitation and vegetation conditions. Taken together, these findings have significant implications for the understanding of how ET can assist in water resources management.
2

Relative contribution of land use change and climate variability on discharge of upper Mara River, Kenya

Mwangi, Hosea M., Julich, Stefan, Patil, Sopan D., McDonald, Morag A., Feger, Karl-Heinz 27 July 2017 (has links) (PDF)
Study region Nyangores River watershed, headwater catchment of Mara River basin in Kenya. Study focus Climate variability and human activities are the main drivers of change of watershed hydrology. The contribution of climate variability and land use change to change in streamflow of Nyangores River, was investigated. Mann Kendall and sequential Mann Kendall tests were used to investigate the presence and breakpoint of a trend in discharge data (1965–2007) respectively. The Budyko framework was used to separate the respective contribution of drivers to change in discharge. Future response of the watershed to climate change was predicted using the runoff sensitivity equation developed. New hydrological insights for the region There was a significant increasing trend in the discharge with a breakpoint in 1977. Land use change was found to be the main driver of change in discharge accounting for 97.5% of the change. Climate variability only caused a net increase of the remaining 2.5% of the change; which was caused by counter impacts on discharge of increase in rainfall (increased discharge by 24%) and increase in potential evapotranspiration (decreased discharge by 21.5%). Climate change was predicted to cause a moderate 16% and 15% increase in streamflow in the next 20 and 50 years respectively. Change in discharge was specifically attributed to deforestation at the headwaters of the watershed.
3

Relative contribution of land use change and climate variability on discharge of upper Mara River, Kenya

Mwangi, Hosea M., Julich, Stefan, Patil, Sopan D., McDonald, Morag A., Feger, Karl-Heinz 27 July 2017 (has links)
Study region Nyangores River watershed, headwater catchment of Mara River basin in Kenya. Study focus Climate variability and human activities are the main drivers of change of watershed hydrology. The contribution of climate variability and land use change to change in streamflow of Nyangores River, was investigated. Mann Kendall and sequential Mann Kendall tests were used to investigate the presence and breakpoint of a trend in discharge data (1965–2007) respectively. The Budyko framework was used to separate the respective contribution of drivers to change in discharge. Future response of the watershed to climate change was predicted using the runoff sensitivity equation developed. New hydrological insights for the region There was a significant increasing trend in the discharge with a breakpoint in 1977. Land use change was found to be the main driver of change in discharge accounting for 97.5% of the change. Climate variability only caused a net increase of the remaining 2.5% of the change; which was caused by counter impacts on discharge of increase in rainfall (increased discharge by 24%) and increase in potential evapotranspiration (decreased discharge by 21.5%). Climate change was predicted to cause a moderate 16% and 15% increase in streamflow in the next 20 and 50 years respectively. Change in discharge was specifically attributed to deforestation at the headwaters of the watershed.

Page generated in 0.0461 seconds