• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 26
  • 10
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exergy Analysis in Buildings : A complementary approach to energy analysis

Molinari, Marco January 2009 (has links)
<p>Though mandatory to be pursued, improved energy efficiency is not the only target to reach. The quality of energy has to be assessed as well. Most of the overall energy use in residential building is for low temperature heat, i.e. temperatures relatively close to the outdoor conditions. From a thermodynamic point of view, this is a degraded form of energy with low potential to be converted into work. On the other hand energy demand is mostly met with high quality energy, such as electricity and natural gas. There is a mismatch between supply and demand, which is not clearly shown by the sole energy analysis. Target of this thesis is to analyze the energy use in buildings from the point of view of its quality, to provide effective theoretical and calculation tools to investigate this mismatch, to assess its magnitudo and to propose improvements aiming at a more rational use of the energy. The idea behind the quality is clarified with the concept of exergy.</p><p>The potential for improvement in space heating is shown. In no heating system the overall exergy efficiency is above 20%, with fossil fuels. Using direct electricity heating results in exergy efficiency below 7%. Most of the household appliances processes have low-exergy factors but still are supplied with electricity. This results in poor exergy efficiencies and large exergy losses.</p><p>Systems are poorly performing because little consideration is explicitly given to energy quality. Policies to lower the energy demand, though vital as first step towards an improved use of energy, should not neglect the exergy content.</p><p>The problem is then shifted to find suitable supplies. Electricity can be exploited with low exergy losses with high-COP heat pumps. Use of fossil fuels for heating purposes should be avoided. District heating from cogeneration and geothermal proves to be a suitable solution at the building level. The issues connected to its exploitation forces to shift the boundary layers of the analysis from the building level to the community level. A rational use of energy should address the community level. The system boundaries have to be enlarged to a dimension where both the energy conversion and use take place with reduced energy transportation losses. This is a cost-effective way to avoid the waste of the exergy potential of the sources with exergy cascade and to make it possible the integration of with renewable sources. Exergy efficiency of the buildings is a prerequisite for a better of energy in this field.</p> / IEA ECBCS Annex 49: Low Exergy Systems for High Performance Buildings and Communities / ESF Cost C24: Analysis and Design of Innovative Systems for Low-EXergy in the Built Environment: COSTeXergy
2

Exergy Analysis in Buildings : A complementary approach to energy analysis

Molinari, Marco January 2009 (has links)
Though mandatory to be pursued, improved energy efficiency is not the only target to reach. The quality of energy has to be assessed as well. Most of the overall energy use in residential building is for low temperature heat, i.e. temperatures relatively close to the outdoor conditions. From a thermodynamic point of view, this is a degraded form of energy with low potential to be converted into work. On the other hand energy demand is mostly met with high quality energy, such as electricity and natural gas. There is a mismatch between supply and demand, which is not clearly shown by the sole energy analysis. Target of this thesis is to analyze the energy use in buildings from the point of view of its quality, to provide effective theoretical and calculation tools to investigate this mismatch, to assess its magnitudo and to propose improvements aiming at a more rational use of the energy. The idea behind the quality is clarified with the concept of exergy. The potential for improvement in space heating is shown. In no heating system the overall exergy efficiency is above 20%, with fossil fuels. Using direct electricity heating results in exergy efficiency below 7%. Most of the household appliances processes have low-exergy factors but still are supplied with electricity. This results in poor exergy efficiencies and large exergy losses. Systems are poorly performing because little consideration is explicitly given to energy quality. Policies to lower the energy demand, though vital as first step towards an improved use of energy, should not neglect the exergy content. The problem is then shifted to find suitable supplies. Electricity can be exploited with low exergy losses with high-COP heat pumps. Use of fossil fuels for heating purposes should be avoided. District heating from cogeneration and geothermal proves to be a suitable solution at the building level. The issues connected to its exploitation forces to shift the boundary layers of the analysis from the building level to the community level. A rational use of energy should address the community level. The system boundaries have to be enlarged to a dimension where both the energy conversion and use take place with reduced energy transportation losses. This is a cost-effective way to avoid the waste of the exergy potential of the sources with exergy cascade and to make it possible the integration of with renewable sources. Exergy efficiency of the buildings is a prerequisite for a better of energy in this field. / IEA ECBCS Annex 49: Low Exergy Systems for High Performance Buildings and Communities / ESF Cost C24: Analysis and Design of Innovative Systems for Low-EXergy in the Built Environment: COSTeXergy
3

Global sensitivity analysis of the building energy performance and correlation assessment of the design parameters

Prando, Dario January 2011 (has links)
The world’s energy use in buildings (residential and commercial) accounts for around 40% of the worldwide energy consumption, and space heating is the responsible for half of the energy need in the building sector. In Europe, only a small share (less than 10%) of existing buildings was built after 1990. Most of the building stock does not satisfy the recent energy technical standards; in addition there is a very low trend to construct new buildings in the last years. Renovation of the existing buildings is a feasible option to reduce the energy need in Europe, but finding the optimum solutions for a renovation is not a simple task. Each design parameter differently influences the final energy need of buildings and, furthermore, the different variables are differently correlated each other. Building refurbishment will benefit from a tool for the selection of the best measures in term of energy need. This work, through a global sensitivity analysis, aims at determining the contribution of the design parameters to the building energy demand and the correlation between the different variables. The considered parameters are related to the improvement of the thermal transmittance of both the opaque envelope and the windows, the solar transmittance of the glazing surfaces, the window size, the thermal inertia of the internal walls and the external sunshades for windows. Several dynamic simulations have been performed varying the design parameters from different starting conditions. Finally, due to the large number of cases elaborated, an inferential statistical analysis has been performed in order to identify the predominant factors and the correlation between the design parameters in a global context.
4

High Performance Window Systems and their Effect on Perimeter Space Commercial Building Energy Performance

Lee, Ivan Yun Tong 29 September 2010 (has links)
In the quest for improving building energy efficiency raising the level of performance of the building enclosure has become critical. As the thermal performance of the building enclosure improves so does the overall energy efficiency of the building. One key component in determining the energy performance of the building enclosure is windows. Windows have an integral role in determining the energy performance of a building by allowing light and heat from the sun to enter into a space. Energy efficient buildings take advantage of this free solar energy to help offset heating energy consumption and electric lighting loads. However, windows are traditionally the least insulating component of the modern building assembly. With excessive use, larger window areas can lead to greater occupant discomfort and energy consumption from greater night-time heat loss, higher peak and total cooling energy demand from unwanted solar gains, and discomfort glare. As a result, windows must be carefully designed to not only minimize heat loss, but also effectively control solar gains to maintain both a thermally and visually comfortable environment for the appropriate climate region and orientation. In this thesis, a complete analysis of window assemblies for commercial office buildings is presented. The analysis is divided into three sections: the Insulated Glazing Unit (IGU), the Curtain Wall Section (frames), and the overall energy performance of a typical office building. The first section investigates the performance characteristics of typical and high performance IGUs, specifically its insulating value (Ucg), its solar heat gain properties (Solar Heat Gain Coefficient, SHGC), and its visual transmittance (VT) through one-dimensional heat transfer and solar-optical modeling. Mechanisms of heat transfer across IGUs were investigated giving insight into the parameters that had the most significant effect on improving each performance characteristic. With a through understanding of IGU performance, attainable performance limits for each of property were generated from combining of different glazing materials, fill gases, and coatings. Through the right combination of materials IGU performance can be significantly altered. The U-value performance of IGUs ranges from 2.68 W/m2K (R-2.1) for a double-glazed, clear, air filled IGU to 0.27 W/m2K (R-21) for a quint-glazed, low-E, xenon filled high performance IGU. The second part of the thesis looks at the thermal performance of curtain wall sections that hold the IGU through two-dimensional heat transfer modeling. Similar to the IGUs, heat transfer mechanisms were studied to by substituting different materials to determine which components are crucial to thermal performance. From this analysis improvements were made to typical curtain wall design that significantly reduces the overall heat transfer within the frame section, producing a high performance curtain wall section. With simple modifications, a high performance curtain wall section can reduce its U-value by as much as 81% over a typical curtain wall section, going from 13.39 W/m2K to 2.57 W/m2K. Thus significantly reducing the U-value of curtain wall systems, particularly for smaller windows. The final part of the thesis examines the impact of typical and high performance windows on the energy performance of perimeter offices of a high-rise commercial building located in Southern Ontario. An hourly simulation model was set up to evaluate both the annual and peak energy consumption of a typical perimeter office space. The office faced the four cardinal directions of north, east, south, and west to evaluate the effect of orientation. The model also included continuous dimming lighting controls to make use of the available daylight. The effect of exterior shading on perimeter space energy performance was also investigated with both dynamic and static exterior shading devices. The results of the simulations revealed that window properties have very little influence on the energy performance of a high internal heat gain office, that is typical of older offices with less energy efficient office equipment and lighting and a higher occupant density. Conversely, window properties, particularly the insulating value of the window, has a greater effect on the energy performance of a mid to low internal heat gain office that is typical of most modern day commercial buildings. The results show windows with lower U-values yet higher SHGC are preferred over windows of similar U-values but with lower SHGC. The results also indicate that both static and dynamic shading have very little effect on energy performance of mid to low internal heat gain offices. From this analysis optimal window areas in the form of window-to-wall ratios (WWR) are presented for each orientation for mid to low internal heat gain offices. The optimal WWR for south-facing facades are between 0.50 to 0.66, and 0.30 to 0.50 for east-, west-, and north-facing facades, while for high internal heat gain perimeter spaces window areas should be kept to a minimum.
5

A new integrated procedure for energy audits and analyses of buildings / M.F. Geyser

Geyser, Martinus Fredrik January 2003 (has links)
A rapid growth in the national electricity demand is placing an ever-increasing demand on the national electricity supply utility, Eskom. Projections show that the load demand in South Africa may exceed the installed capacity by as early as 2007. This is mainly due to the increase in demand in the residential sector as a result of the electrification of rural and previously disadvantaged communities. However, the industrial and commercial sectors also have a role in this increase. In an attempt to reduce the demand for electricity Eskom has adopted its Demand Side Management (DSM) initiative. This initiative is aimed at lowering the electricity demand in peak times through energy efficiency (EE) or load shift, out of peak demand times. Eskom is implementing the DSM strategy by financing Energy Service Companies (ESCOs) to reduce the demand load of major electricity end-users during peak times. Buildings consume a large percentage of the total energy supply in the world. Most of the energy consumed in buildings is used by the heating, ventilation and air-conditioning (HVAC) systems, as well as lighting. However, a large potential for energy savings exists in buildings. Studies have shown that up to 70% of the electricity consumption of a building can be saved through retrofit studies. However, to capitalise on these opportunities, the ESCOs require tools and procedures that would enable them to accomplish energy savings studies quickly and efficiently. It should be a holistic approach to the typical ESCO building audit. A study of current available software programs showed the lack of holistic tools aimed specifically at retrofit audits, and therefore also the need for such a program. The building simulation program most suited to the retrofit study was chosen and it was used in a retrofit audit. By emulating a retrofit audit with this software, its performance in the field, both positive and negative, could be established. With the experience gained from the retrofit study, as well as input from ESCOs in the industry, a need for such a retrofit tool was established. The simulation program that was tested in the retrofit study is the tool Quickcontrol, as well as the newer version of the program, entitled QEC. The case study showed that even though these packages are well suited to ESCO work, they have certain drawbacks in view of the holistic project approach. The ESCOs require a simple, fast, and integrated procedure for energy audits. This procedure should be embodied in a software program. This study proposes a new integrated procedure for energy audits and the analyses of buildings, in the form of a software tool. This new tool is geared towards the ESCO building audit, in both South A6ica and internationally. It is designed to enable a diplomate engineer to accomplish a building energy and retrofit analysis in two weeks, leading the user through all the main project steps, from data acquisition to writing of the final project report. This is a significant improvement, since it normally takes 50 man-days for an experienced and trained engineering team to complete a full building audit. This tool was used in a case study to test its validity and accuracy. It was found that certain situations would arise in which the criteria that were set for the program would not be adequate. The results from the case study were favourable and satisfied the criteria that were set for the procedure. / Thesis (Ph.D. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2004.
6

High Performance Window Systems and their Effect on Perimeter Space Commercial Building Energy Performance

Lee, Ivan Yun Tong 29 September 2010 (has links)
In the quest for improving building energy efficiency raising the level of performance of the building enclosure has become critical. As the thermal performance of the building enclosure improves so does the overall energy efficiency of the building. One key component in determining the energy performance of the building enclosure is windows. Windows have an integral role in determining the energy performance of a building by allowing light and heat from the sun to enter into a space. Energy efficient buildings take advantage of this free solar energy to help offset heating energy consumption and electric lighting loads. However, windows are traditionally the least insulating component of the modern building assembly. With excessive use, larger window areas can lead to greater occupant discomfort and energy consumption from greater night-time heat loss, higher peak and total cooling energy demand from unwanted solar gains, and discomfort glare. As a result, windows must be carefully designed to not only minimize heat loss, but also effectively control solar gains to maintain both a thermally and visually comfortable environment for the appropriate climate region and orientation. In this thesis, a complete analysis of window assemblies for commercial office buildings is presented. The analysis is divided into three sections: the Insulated Glazing Unit (IGU), the Curtain Wall Section (frames), and the overall energy performance of a typical office building. The first section investigates the performance characteristics of typical and high performance IGUs, specifically its insulating value (Ucg), its solar heat gain properties (Solar Heat Gain Coefficient, SHGC), and its visual transmittance (VT) through one-dimensional heat transfer and solar-optical modeling. Mechanisms of heat transfer across IGUs were investigated giving insight into the parameters that had the most significant effect on improving each performance characteristic. With a through understanding of IGU performance, attainable performance limits for each of property were generated from combining of different glazing materials, fill gases, and coatings. Through the right combination of materials IGU performance can be significantly altered. The U-value performance of IGUs ranges from 2.68 W/m2K (R-2.1) for a double-glazed, clear, air filled IGU to 0.27 W/m2K (R-21) for a quint-glazed, low-E, xenon filled high performance IGU. The second part of the thesis looks at the thermal performance of curtain wall sections that hold the IGU through two-dimensional heat transfer modeling. Similar to the IGUs, heat transfer mechanisms were studied to by substituting different materials to determine which components are crucial to thermal performance. From this analysis improvements were made to typical curtain wall design that significantly reduces the overall heat transfer within the frame section, producing a high performance curtain wall section. With simple modifications, a high performance curtain wall section can reduce its U-value by as much as 81% over a typical curtain wall section, going from 13.39 W/m2K to 2.57 W/m2K. Thus significantly reducing the U-value of curtain wall systems, particularly for smaller windows. The final part of the thesis examines the impact of typical and high performance windows on the energy performance of perimeter offices of a high-rise commercial building located in Southern Ontario. An hourly simulation model was set up to evaluate both the annual and peak energy consumption of a typical perimeter office space. The office faced the four cardinal directions of north, east, south, and west to evaluate the effect of orientation. The model also included continuous dimming lighting controls to make use of the available daylight. The effect of exterior shading on perimeter space energy performance was also investigated with both dynamic and static exterior shading devices. The results of the simulations revealed that window properties have very little influence on the energy performance of a high internal heat gain office, that is typical of older offices with less energy efficient office equipment and lighting and a higher occupant density. Conversely, window properties, particularly the insulating value of the window, has a greater effect on the energy performance of a mid to low internal heat gain office that is typical of most modern day commercial buildings. The results show windows with lower U-values yet higher SHGC are preferred over windows of similar U-values but with lower SHGC. The results also indicate that both static and dynamic shading have very little effect on energy performance of mid to low internal heat gain offices. From this analysis optimal window areas in the form of window-to-wall ratios (WWR) are presented for each orientation for mid to low internal heat gain offices. The optimal WWR for south-facing facades are between 0.50 to 0.66, and 0.30 to 0.50 for east-, west-, and north-facing facades, while for high internal heat gain perimeter spaces window areas should be kept to a minimum.
7

A new integrated procedure for energy audits and analyses of buildings / M.F. Geyser

Geyser, Martinus Fredrik January 2003 (has links)
A rapid growth in the national electricity demand is placing an ever-increasing demand on the national electricity supply utility, Eskom. Projections show that the load demand in South Africa may exceed the installed capacity by as early as 2007. This is mainly due to the increase in demand in the residential sector as a result of the electrification of rural and previously disadvantaged communities. However, the industrial and commercial sectors also have a role in this increase. In an attempt to reduce the demand for electricity Eskom has adopted its Demand Side Management (DSM) initiative. This initiative is aimed at lowering the electricity demand in peak times through energy efficiency (EE) or load shift, out of peak demand times. Eskom is implementing the DSM strategy by financing Energy Service Companies (ESCOs) to reduce the demand load of major electricity end-users during peak times. Buildings consume a large percentage of the total energy supply in the world. Most of the energy consumed in buildings is used by the heating, ventilation and air-conditioning (HVAC) systems, as well as lighting. However, a large potential for energy savings exists in buildings. Studies have shown that up to 70% of the electricity consumption of a building can be saved through retrofit studies. However, to capitalise on these opportunities, the ESCOs require tools and procedures that would enable them to accomplish energy savings studies quickly and efficiently. It should be a holistic approach to the typical ESCO building audit. A study of current available software programs showed the lack of holistic tools aimed specifically at retrofit audits, and therefore also the need for such a program. The building simulation program most suited to the retrofit study was chosen and it was used in a retrofit audit. By emulating a retrofit audit with this software, its performance in the field, both positive and negative, could be established. With the experience gained from the retrofit study, as well as input from ESCOs in the industry, a need for such a retrofit tool was established. The simulation program that was tested in the retrofit study is the tool Quickcontrol, as well as the newer version of the program, entitled QEC. The case study showed that even though these packages are well suited to ESCO work, they have certain drawbacks in view of the holistic project approach. The ESCOs require a simple, fast, and integrated procedure for energy audits. This procedure should be embodied in a software program. This study proposes a new integrated procedure for energy audits and the analyses of buildings, in the form of a software tool. This new tool is geared towards the ESCO building audit, in both South A6ica and internationally. It is designed to enable a diplomate engineer to accomplish a building energy and retrofit analysis in two weeks, leading the user through all the main project steps, from data acquisition to writing of the final project report. This is a significant improvement, since it normally takes 50 man-days for an experienced and trained engineering team to complete a full building audit. This tool was used in a case study to test its validity and accuracy. It was found that certain situations would arise in which the criteria that were set for the program would not be adequate. The results from the case study were favourable and satisfied the criteria that were set for the procedure. / Thesis (Ph.D. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2004.
8

Energy services for high performance buildings and building clusters - towards better energy quality management in the urban built environment

Marmoux, Pierre-Benoît January 2012 (has links)
With an increasing awareness of energy consumption and CO 2emission in the population, several initiatives to reduce CO2emissions have been presented all around the world. The main part of these initiatives is a reduction of the energy consumption for existing buildings, while the others concern the building of eco-districts with low-energy infrastructures and even zero-energy infrastructures. In this idea of reducing the energy consumption and of developing new clean areas, this master thesis will deal with the high energy quality services for new urban districts. In the scope of this master thesis project, the new concept of sustainable cities and of clusters of buildings will be approached in order to clearly understand the future challenges that the world’s population is going to face during this century. Indeed, due to the current alarming environmental crisis, the need to reduce human impacts on the environment is growing more and more and is becoming inescapable. We will present a way to react to the current situation and to counteract it thanks to new clean technologies and to new analysis approaches, like the exergy concept. Through this report, we are going to analyze the concepts of sustainable cities and clusters of buildings as systems, and focus on their energy aspects in order to set indoor climate parameters and energy supply parameters to ensure high energy quality services supplies to high performance buildings. Thanks to the approach of the exergy concept, passive and active systems such as nocturnal ventilation or floor heating and cooling systems have been highlighted in order to realize the ‘energy saving’ opportunities that our close environment offers. This work will be summarized in a methodology that will present a way to optimize the energy use of all services aspects in a building and the environmental friendly characteristics of the energy resources mix, which will supply the buildings’ low energy demands.
9

Energy Modeling Existing Large University Buildings

Zaidi, Syed Tabish 21 October 2019 (has links)
No description available.
10

A Comparative Analysis of Energy ModelingMethods for Commercial Buildings

Salmon, Spencer Mark 11 July 2013 (has links) (PDF)
This thesis researched the accuracy of measured energy data in comparison to estimated hand calculation data and estimated building energy performance simulation data. In the facility management industry, there is minimal evidence that building energy performance software is being used as a benchmark against measured energy usage within a building. Research was conducted to find examples of measured energy data compared to simulated data. The study examined the accuracy of a simulation software and hand calculations to measured energy data. Data suggests that comparisons may be made between building energy performance simulated data and measured data, though comparisons are solely based on each individual case. Data suggests that heating load simulation data is more accurate for benchmarks than cooling load simulation data. Importing models into Autodesk Green Building Studio (GBS) was not as successful as was expected. When only four of the initial ten building models chosen imported successfully, the remaining twenty-five other building models were imported. Only two of the twenty-five models successfully imported into GBS. The sample size of this research changed from ten to six. The results of this study show that GBS simulated data was close to actual data for the heating loads. For the cooling loads, however, GBS simulated data was consistently low in comparison to the actual data. The results of this study show that hand calculations were consistently low and not as close as GBS simulated data when compared to the actual data for the heating loads. The opposite was true with the cooling loads as hand calculations were consistently high in comparison to actual data.

Page generated in 0.1221 seconds