• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 1
  • Tagged with
  • 25
  • 25
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental measurements of bulk modulus for two types of hydraulic oil at pressures to 140MPa and temperatures to 180°C

Yang, Shudong, Tao, Aihua, Luo, Yulin, Zhang, Junxiang, Zhou, Peng, Zhou, Lin 28 April 2016 (has links) (PDF)
Bulk modulus of hydraulic oil represents the resistance of hydraulic oil to compression and is the reciprocal of compressibility. The bulk modulus is a basic thermodynamic property of hydraulic oil that has a very important influence on work efficiency and dynamic characteristics of hydraulic systems, especially for the hydraulic systems at ultra-high pressure or ultra-high temperature. In this study, a bulk modulus experimental equipment for hydraulic oil was designed and manufactured, two types of hydraulic oil were selected and its isothermal secant bulk modulus were measured at pressures to 140MPa and temperatures of 20~180°C. Compared the experimental results with the calculated results from the prediction equations of liquid bulk modulus that proposed by Klaus, Hayward, and Song, it is found that the experimental results are not completely identical with the calculated results.
2

Laboratory measurements of static and dynamic elastic properties in carbonate

Bakhorji, Aiman M 06 1900 (has links)
The fact that many of the giant hydrocarbon reservoirs, such as the Ghawar field in Saudi Arabia and the Grosmont formation in Alberta, are formed from carbonates make these rocks important research topics. Compressional and shear wave velocities (at 1 MHz) and the quasi-static strains of thirty seven carbonate rock samples were measured as functions of saturating fluid and confining pressure. Furthermore, P- and S-wave velocities of the saturated samples were measured at constant differential pressure of 15 MPa. The quasi-static strains of the samples under jacketed and unjacketed conditions were also simultaneously acquired. The lithology, mineralogy, porosity and pore type and size distribution of each sample were obtained using a combination of thinsection and scanning electron microscopy, helium porosimetry and mercury intrusion porosimetry. Due to the lack of closing microcracks and compliant pores in low porosity samples, the travel times show slight changes with the confining pressure. Whereas the high porosity samples show remarkable reduction of travel time with the increase of confining pressure in both P- and S-wave. The samples show no changes in travel time with increasing confining pressure under constant differential pressure, and this behavior is taken to be representative of full saturation of the sample and hence used as a measure of quality control. The comparisons of Biot, Gassmann, squirt-Biot and squirt-Gassmann model predictions with the measured water saturated velocities show that the squirt mechanism is not active on all the studied samples. Biot mechanism is likely to be the principle dispersion mechanism in these samples. For S-wave velocities, Gassmanns model consistently over-predict the saturated at low pressure and closely fit the measured velocities at high pressure, whereas, Biot model over-predicts the saturated velocities in most of the studied samples. The strains over the horizontal axis are higher than the vertical axis suggesting that the majority of the compliant pores and crack-like pores are oriented almost in direction parallel to the length of the sample. The static bulk modulus is always lower than dynamic one for all measured samples. The measured grain bulk modulus is reasonably close to the bulk modulus of the constituent mineral. / Geophysics
3

Laboratory measurements of static and dynamic elastic properties in carbonate

Bakhorji, Aiman M Unknown Date
No description available.
4

Precise Fish Volume Estimation Using Underwater Helmholtz Resonance / 水中ヘルムホルツ共鳴を用いた魚体積の精密推定

Njane, Stephen Njehia 24 September 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第22076号 / 農博第2368号 / 新制||農||1072(附属図書館) / 学位論文||R1||N5230(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 近藤 直, 准教授 小川 雄一, 教授 飯田 訓久 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
5

A modified viscoplastic formulation for large deformations using a bulk modulus approach

Rusia, Devendra Kumar January 1987 (has links)
No description available.
6

Bulk Modulus and Traction Effects in an Axial Piston Pump and a Radial Piston Motor

Michael, Paul W., Mettakadapa, Shreya 02 May 2016 (has links) (PDF)
This paper describes an investigation into the effects of fluid bulk modulus and traction coefficient properties on piston pump flow losses and radial pison motor torque losses through experimentation, modelling and simulation. Synthetic ester, high bulk modulus, multi-grade, and single grade mineral oils were evaluated. The high bulk modulus fluid exhibited 20% lower pump case and compensator flow losses than a conventional mineral oil of the same viscosity grade. Low traction coefficient fluids reduced the lowspeed torque losses of the radial piston motor by 50%. Physical models for pump case flow and motor torque losses were derived from the experimental data. Field data was collected from a hydraulically propelled agricultural machine. This data was used to model fluid performance in the machine. The simulation results predict that at an operating temperature of 80⁰C, optimizing the bulk modulus and traction coefficients of the fluid could reduce flow losses by 18% and torque losses by 5%. These findings demonstrate the potential of combining comprehensive fluid analysis with modeling and simulation to optimize fluids for the efficient transmission of power.
7

The investigation of mechanical properties of ZrCu/Zr/ZrCu amorphous¡Ðcrystalline¡@nanolaminates with inclined interface by molecular statics simulation

Feng, Yu-ting 23 July 2012 (has links)
In this study, the mechanical properties of Cu-Zr binary bulk metallic glasses (BMG) were investigated at the nano-scale. The stable amorphous structures and corresponding energies of BMG structures are performed by density functional theory (DFT) calculation as reference data. This study will combine the Force-Matching (FM) method and Basin-Hopping (BH) method to develop a new method for fitting the Cu-Zr Tight-binding (TB) potential parameters. Moreover, the Bulk modulus, Shear modulus, Young's modulus and Poisson ratio of Cu46Zr54, Cu50Zr50 and Cu64Zr36 structures are calculated with the fitting TB parameters. In addition, the compression process of BMG materials is simulated by the Molecular Statics. The stress and strain are obtained to investigate the deformation mechanism of CuZr/Zr/CuZr nanolaminates at 0 and 45 inclined degree. Finally, we investigate the angle in the deformation process under different strain in the shear band, shear transformation zones (STZs) and force caused by the slip of the atomic distribution of TFMGs layer.
8

Influence of Chemical Composition and Water on the Bulk Modulus of Pyrope

Huang, Shu 27 March 2014 (has links)
Garnets are major silicates from the upper mantle to the transition zone. Elastic properties of garnets are essential to interpret the variation of seismic velocities at different depths and construct a model of the Earth’s composition. Due to the chemical flexibility at octahedron sites of the crystal structures, garnets usually exist with multiple components and have many composition variations. Pyrope is an important member in the garnet group. Fe2+-Mg2+ substitution in pyrope is one of the common solid solutions. We have synthesized and measured three synthetic solid solutions samples (Py83Alm17, Py54Alm46 and Py30Alm70). Equations of state yielded their isothermal bulk moduli K0 to be 172(4)GPa, 174(2)GPa, and 183(2)GPa, respectively, which confirmed that almandine content (Fe2+ substitution) increased the bulk modulus of the garnet. A relation between the bulk modulus and the almandine mole fraction (n) was derived to be K0 = 170 + 15 n, showing it is a nearly ideal mixing model. Another factor that also significantly influences the elasticity of pyrope is water. Water is transported to the deep Earth by subduction slabs and mainly exists in nominally anhydrous minerals (NAM) as hydroxyl (OH-). Its content in minerals varies as depth increases. We therefore investigated pressure influence on water solubility in pyrope. A suite of pyrope single crystals was synthesized in a water-saturated environment at 6, 7, 9 and 12GPa and water was characterized by FTIR. IR spectra showed a typical peak at 3630 cm-1. At 9 and 12GPa, new peaks at 3572 cm-1 and 3504 cm-1 appeared and indicated that a new substitution mechanism, other than hydrogarnet substitution SiO4=(OH)4, was adopted in the pyrope crystal structure. Water solubility in pyrope reached 0.2wt% at 7GPa. From 4-7GPa, water solubility increased. At 9GPa, water content dropped to 0.07wt% and increased to 0.3wt% at 12GPa, where a cubic to tetragonal phase transition was observed. Water showed a weakening effect on the bulk moduli of hydrous pyrope. Their bulk moduli were 166GPa, 173GPa and 161GPa with water contents of 0.07wt%, 0.1wt% and 0.2wt%, respectively. An approximate linear relationship was proposed about the bulk modulus as a function of water content.
9

Experimental measurements of bulk modulus for two types of hydraulic oil at pressures to 140MPa and temperatures to 180°C

Yang, Shudong, Tao, Aihua, Luo, Yulin, Zhang, Junxiang, Zhou, Peng, Zhou, Lin January 2016 (has links)
Bulk modulus of hydraulic oil represents the resistance of hydraulic oil to compression and is the reciprocal of compressibility. The bulk modulus is a basic thermodynamic property of hydraulic oil that has a very important influence on work efficiency and dynamic characteristics of hydraulic systems, especially for the hydraulic systems at ultra-high pressure or ultra-high temperature. In this study, a bulk modulus experimental equipment for hydraulic oil was designed and manufactured, two types of hydraulic oil were selected and its isothermal secant bulk modulus were measured at pressures to 140MPa and temperatures of 20~180°C. Compared the experimental results with the calculated results from the prediction equations of liquid bulk modulus that proposed by Klaus, Hayward, and Song, it is found that the experimental results are not completely identical with the calculated results.
10

Bulk Modulus and Traction Effects in an Axial Piston Pump and a Radial Piston Motor

Michael, Paul W., Mettakadapa, Shreya January 2016 (has links)
This paper describes an investigation into the effects of fluid bulk modulus and traction coefficient properties on piston pump flow losses and radial pison motor torque losses through experimentation, modelling and simulation. Synthetic ester, high bulk modulus, multi-grade, and single grade mineral oils were evaluated. The high bulk modulus fluid exhibited 20% lower pump case and compensator flow losses than a conventional mineral oil of the same viscosity grade. Low traction coefficient fluids reduced the lowspeed torque losses of the radial piston motor by 50%. Physical models for pump case flow and motor torque losses were derived from the experimental data. Field data was collected from a hydraulically propelled agricultural machine. This data was used to model fluid performance in the machine. The simulation results predict that at an operating temperature of 80⁰C, optimizing the bulk modulus and traction coefficients of the fluid could reduce flow losses by 18% and torque losses by 5%. These findings demonstrate the potential of combining comprehensive fluid analysis with modeling and simulation to optimize fluids for the efficient transmission of power.

Page generated in 0.0301 seconds