• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 8
  • 1
  • Tagged with
  • 36
  • 36
  • 36
  • 14
  • 12
  • 12
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An investigation of metallic glass as binder phase in hard metal / En studie om metalliskt glas som bindefas i hårdmetall

Malin, Leijon Lind January 2015 (has links)
In this study, the possibilities to produce metallic glass as binder phase in hard metal by means of powder metallurgical methods have been investigated. The aim of the study was to do an initial investigation about metallic glass as alternative binder phase to cobalt in hard metal. Production of samples with metallic glass forming alloys and an amorphous powder as binder phase in hard metal by means of quenching and hot pressing have been performed. Moreover, mechanical alloying of metallic glass forming powder to achieve amorphicity has been performed. The samples and powders were analyzed by means of XRD, LOM, STA, SEM and EDS. The results showed that no glass formation of the binder phase was achieved by quenching, hot pressing or mechanical alloying. However, interesting information about glass formation by means of metallurgical methods was obtained. The main conclusion was that production of metallic glass by means of metallurgical methods is complicated due to changes in the binder phase composition throughout the production process as well as requirements of high cooling rates when quenching and high pressures when hot pressing.
12

Amorphous Al-transition Metal Alloys as Anode Material for Lithium Ion Battery

Wang, C.Y., Ceder, Gerbrand, Li, Yi 01 1900 (has links)
Al based alloy powders (Al₈₅Ni₅Y₆Co₂Fe₂) are produced by spray atomization method. High energy ball milling is done to modify the surface topology and particle size for better electrochemical performance. X ray diffraction (XRD), differential scanning calorimeter (DSC), scanning electron microscope (SEM) and transmission electron microscope (TEM) were conducted to characterize the microstructure of the alloys after ball milling. It is found that 5 hours ball milling gives the minimum crystallization and structure change. Thin film sample is also deposited on stainless steel substrate by pulsed laser deposition (PLD) method for electrochemical test. The capacity and reversibility for different samples are compared and discussed. A capacity of 200mAh/g is obtained for the battery with thin film sample as anode and a capacity of 140mAh/g is obtained for that with electrode from powder sample. Both of the batteries give up to 94% capacity retention after 20 cycles. / Singapore-MIT Alliance (SMA)
13

A Methodology For Instrumented Indentation Studies Of Deformation In Bulk Metallic Glasses

Sridharan, Subhaashree 01 January 2006 (has links)
Bulk Metallic Glasses (BMGs), also known as amorphous metals, are of considerable scientific and commercial interest due to their random or chaotic structure. Given their potential use as engineering materials, there is a concomitant need to establish their mechanical properties. However, BMGs are not conveniently available in sufficient volumes (especially experimental and combinatorial compositions), making property determination via conventional tensile or compression testing problematic. Instrumented indentation is ideally suited for this purpose because the testing requires only small sampling volumes and can probe multiaxial deformation characteristics at various length scales. In this technique, conducted generally on a sub-micron regime, the depth of penetration of an indenter, usually a diamond, is measured as a function of the applied load and expressed graphically as load (P) - displacement (h) curves from which a host of mechanical properties can be extracted and studied. In this work, a methodology for using instrumented indentation at nano- and micro- scales to determine the mechanical response of BMGs was developed and implemented. The implementation primarily focused on deformation in the elastic regime but included preliminary results related to the onset of inelastic deformation. The methodology developed included calibration techniques, formulations to extract the machine compliances, verifications using standards and verification for uniqueness of instrument deformation under a spherical indenter. The methodology was different for the two platforms used based on the load-depth response characteristics of the instrument. In the case of the Micro Test platform, the load-depth response of the instrument was linear. In the case of the Nano Test platform, the instrument load-depth response followed a 3/2 power law, representative of Hertzian behavior. The load-depth response of the instrument was determined by subtracting the theoretical response from the corresponding raw load-depth response obtained by elastically indenting a standard steel specimen of known modulus. The true response of the sample was then obtained by subtracting the instrument's response from the corresponding uncorrected load-depth response (raw data). An analytical model to describe the load-train compliance was developed. The methodology was verified using quartz and tungsten standards. Indentation experiments were conducted on Zr41.25Ti13.75Cu12.5Ni10Be22.5 (Vitreloy 1), Cu60Hf25Ti15, Cu60Zr30Ti10 and Fe60Co7Zr10Mo5W2B16 bulk metallic glasses using spherical indenters with diameters 2.8 mm and 100 [micro]m. The spherical geometry results in a simpler stress distribution under the indenter (when compared to a sharp geometry) and furthermore by recourse to spherical indenters the onset of plastic deformation was delayed. In the case of the Zr-based BMG, the experiments showed that the elastic response did not depend on the diameter of the indenter used indicative of the absence of residual stresses in the sample. Large scale plastic deformation was observed when the sample was indented using a smaller diameter indenter. Log scale analysis (i.e., examining the results on a log load vs. log depth response to check for deviation from Hertzian behavior) showed a deviation from a 3/2 fit indicating a deviation from elastic behavior. The onset implied a yield strength value of ~ 4 GPa, higher than the value reported in the literature (~ 2 GPa). Hence, it is believed that the first signs of plastic deformation occurred at lower loads than the predicted loads from the log scale analysis procedure and is expected to occur as discrete bursts. Discrete plastic events or "pop-ins" were observed in the load-depth indentation responses under quasistatic loading conditions, which were believed to be associated with shear band activity. An attempt was made to formulate a mathematical model based on three yield criteria (Drucker-Prager, Mohr-Coulomb and von Mises). Based on the von Mises predictions and comparable experiments on a quartz standard, it was established that the pop-ins observed were real and not an instrument artifact. Multiple load cycles following partial unload experiments showed that the pop-ins affected the subsequent indentation response. The moduli and the yield strength values obtained for the Cu-based BMGs were comparable to the values reported in the literature. There was significant scatter in the indentation data from the Fe-based BMG. Porosity and lack of 100 % compaction were believed to be the reasons for scatter in the data. The financial support of NSF through grant DMR 0314212 is gratefully acknowledged.
14

Catalytic Properties and Mechanical Behavior of Metallic Glass Powders

Garrison, Seth 05 1900 (has links)
Lack of crystalline order and microstructural features such as grain/grain-boundary in metallic glasses results in a suite of remarkable attributes including very high strength, close to theoretical elasticity, high corrosion and wear resistance, and soft magnetic properties. By altering the morphology and tuning of composition, MGs may be transformed into high-performance catalytic materials. In this study, the catalytic properties of metallic glass powders were demonstrated in dissociating toxic organic chemicals such as AZO dye. BMG powders showed superior performance compared to state of the art crystalline iron because of their high catalytic activity, durability, and reusability. To enhance the catalytic properties, high energy mechanical milling was performed to increase the surface area and defect density. Iron-based bulk metallic glass (BMG) of composition Fe48Cr15Mo14Y2C15B6 was used because of its low cost and ability to make large surface area by high energy ball milling. AZO dye was degraded in less than 20 minutes for the 9 hours milled Fe-BMG. However, subsequent increase in ball milling time resulted in devitrification and loss of catalytic activity as measured using UV-Visible spectroscopy. Aluminum-based bulk metallic glass (Al-BMG) powder of composition Al82Fe3Ni8Y7 was synthesized by arc-melting the constituent elements followed by gas-atomization. The particle size and morphology were similar to Fe-BMG with a fully amorphous structure. A small percentage of transition metal constituents (Fe and Ni) in a mostly aluminum alloy showed high catalytic activity, with no toxic by-products and no change in surface characteristics. Al-alloy particles, being light-weight, were easily dispersed in aqueous medium and accelerated the redox reactions. The mechanism of dye dissociation was studied using Raman and Infrared (IR) spectroscopy. Breaking of -C-H- and - C-N- bonds of AZO dye was found to be the primary mechanism. Mechanical behavior of individual BMG particles was evaluated by in situ pico-indentation in a scanning electron microscope (SEM) to understand the fracture mechanisms. Catastrophic shear banding was found to be the primary fracture mode, which supported the observation of flake formation during high energy ball milling.
15

A High Strain-Rate Investigation of a Zr-based Bulk Metallic Glass and an HTPB Polymer Composite

Sunny, George Padayatil 15 March 2011 (has links)
No description available.
16

Mechanical and Microstructural Properties of Bulk Metallic Glass and Bulk Metallic Glass Composite as a Function of Temperature and Loading Conditions

Booth, Jessica A. 11 June 2014 (has links)
No description available.
17

Flash-Annealing of Cu-Zr-Al-based Bulk Metallic Glasses

Kosiba, Konrad 29 May 2017 (has links) (PDF)
(Bulk) metallic glasses ((B)MGs) are known to exhibit the highest yield strength of any metallic material (up to 5GPa), and show an elastic strain at ambient conditions, which is about ten times larger than that of crystalline materials. Despite these intriguing mechanical properties, BMGs are not used as structural materials in service, so far. The major obstacle is their inherent brittleness, which results from severe strain localization in so-called shear bands. MGs fail due to formation and propagation of shear bands. A very effective way to attenuate the brittle behaviour is to incorporate crystals into the glass. The resulting BMG composites exhibit high strength as well as plasticity. Cu-Zr-Al-based BMG composites are special to that effect, since they combine high strength, plasticity and work-hardening. They are comprised of the glass and shape-memory B2 CuZr crystals, which can undergo a deformation-induced martensitic transformation. The work-hardening originates from the martensitic transformation and overcompensates the work-softening of the glass. The extent of the plasticity of BMG composites depends on the volume fraction, size and particularly on the distribution of the B2 CuZr crystals. Nowadays, it is very difficult, if not impossible to prepare BMG composites with uniformly distributed crystals in a reproducible manner by melt-quenching, which is the standard preparation method. Flash-annealing of BMGs represents a new approach to overcome this deficiency in the preparation of BMG composites and is the topic of the current thesis. Cu46Zr46Al8 and Cu44Zr44Al8Hf2Co2 BMGs were flash-annealed and afterwards investigated in terms of phase formation, crystallization kinetics and mechanical properties. Flash-annealing is a process, which is characterized by the rapid heating of BMGs to predefined temperatures followed by instantaneous quenching. A temperature-controlled device was succesfully developed and built. The Cu-Zr-Al-based BMGs can be heated at rates ranging between 16 K/s and about 200 K/s to temperatues above their melting point. Rapid heating is followed by immediate quenching where cooling rates of the order of 1000 K/s are achieved. As a BMG is flash-annealed, it passes the glass-transition temperature, Tg, and transforms to a supercooled liquid. Further heating leads to its crystallization and the respective temperature, the crystallization temperature, Tx, divides the flash-annealing of BMGs into two regimes: (1) sub-Tx-annealing and (2) crystallization. The structure of the glass exhibits free volume enhanced regions (FERs) and quenched-in nuclei. Flash-annealing affects both heterogeneities and hence the structural state of the glass. FERs appear to be small nanoscale regions and they can serve as initiation sites for shear bands. Flash-annealing of Cu-Zr-Al-based BMGs to temperatures below Tg leads to structural relaxation, the annihilation of FERs and the BMG embrittles. In contrast, the BMG rejuvenates, when flash-annealed to temperatures of the supercooled liquid region (SLR). Rejuvenation is associated with the creation of FERs. Compared to the as-cast state, rejuvenated BMGs show an improved plasticity, due to a proliferation of shear bands, which are the carrier of plasticity in MGs. Flash-annealing enables to probe the influence of the free volume in bulk samples on their mechanical properties, which could not be studied, yet. In addition, B2 CuZr nanocrystals precipitate during the deformation of flash-annealed Cu44Zr44Al8Hf2Co2 BMGs. Deformation-induced nanocrystallization does not occur for the present as-cast BMGs. Flash-annealing appears to stimulate the growth of quenched-in nuclei, which are subcritical in size and can also dissolve, once the BMG is heated to temperatures in the SLR. Rejuvenation represents a disordering process, whereas the growth of quenched-in nuclei is associated with ordering. There is a competition between both processes during flash-annealing. The ordering seems to lead to a “B2-like” clustering of the medium range of Cu44Zr44Al8Hf2Co2 BMGs with increasing heating duration. So far, there does not exist another method to manipulate the MRO of BMGs. If Cu44Zr44Al8Hf2Co2 BMGs are flash-annealed to temperatures near Tx, most likely compressive resiudal stresses develop near the surface, which is cooled faster than the interior of the BMG specimen. They hinder the propagation of shear bands and increase the plasticity of flash-annealed BMGs in addition to rejuvenation and deformation-induced nanocrystallization. If BMGs are heated to temperatures above Tx, they start to crystallize. Depending on the exact temperature to which the BMG is flash-annealed and subsequently quenched, one can induce controlled partial crystallization. Consequently, BMG composites can be prepared. Both Cu-Zr-Al-based BMGs are flash-annealed at various heating rates to study the phase formation as a function of the heating rate. In addition, Tg and Tx are identified for each heating rate, so that a continuous heating transformation diagram is constructed for both glass-forming compositions. An increasing heating rate kinetically constrains the crystallization process, which changes from eutectic (Cu10Zr7 and CuZr2) to polymorphic (B2 CuZr). If the Cu-Zr-Al-based BMGs are heated above a critical heating rate, exclusively B2CuZr crystals precipitate, which are metastable at these temperatures. Thus, flash-annealing of Cu46Zr46Al8 and Cu44Zr44Al8Hf2Co2 BMGs followed by quenching enables the preparation of B2 CuZr BMG composites. The B2 precipitates are small, high in number and uniformly distributed when compared to conventional BMG composites prepared by melt-quenching. Such composite microstructures allow the direct observation of crystal sizes and numbers, so that crystallization kinetics of deeply supercooled liquids can be studied as they are flash-annealed. The nucleation kinetics of devitrified metallic glass significantly diverge from the steady-state and at high heating rates above 90 K/s transient nucleation effects become evident. This transient nucleation phenomenon is studied experimentally for the first time in the current thesis. Once supercritical nuclei are present, they begin to grow. The crystallization temperature, which depends on the heating rate, determines the crystal growth rate. At a later stage of crystallization a thermal front traverses the BMG specimen. In levitation experiments, this thermal front is taken as the solid-liquid interface and its velocity as the steady-state crystal growth rate. However, the thermal front observed during flash-annealing, propagates through the specimen about a magnitude faster than is known from solidification experiments of levitated supercooled liquids. As microstructural investigations show, crystals are present in the whole specimen, that means far ahead of the thermal front. Therefore, it does not represent the solid-liquid interface and results from the collective growth of crystals in confined volumes. This phenomenon originates from the high density of crystals and becomes evident during the heating of metallic glass. It could be only observed for the first time in the current thesis due to the high temporal resolution of the high-speed camera used. The heating rate and temperature to which the BMG is flash-annealed determine the nucleation rate and the time for growth, respectively. The size and number of B2 CuZr crystals can be deliberately varied. Thus mechanical properties of B2 CuZr BMG composites can be studied as a function of the volume fraction and average distance of B2 particles. Cu44Zr44Al8Hf2Co2 BMG specimens were flash-annealed at a lower and higher heating rate (35 K/s and 180 K/s) to different temperatures above Tx and subsequently subjected to uniaxial compression. BMG composites prepared at higher temperatures show a lower yield strength and larger plastic strain due to the higher crystalline volume fraction. They not only exhibit plasticity in uniaxial compression, but also ductility in tension as a preliminary experiment demonstrates. Furthermore, nanocrystals precipitate in the amorphous matrix of BMG composites during deformation. They grow deformation-induced from quenched-in nuclei, which are stimulated during flash-annealing. In essence, flash-annealing of BMGs is capable of giving insight into most fundamental scientific questions. It provides a deeper understanding of how annealing affects the structural state of metallic glasses. The number and size of structural heterogeneities can be adjusted to prepare BMGs with improved plasticity. Furthermore, crystallization kinetics of liquids can be studied as they are rapidly heated. Transient nucleation effects arise during rapid heating of BMGs and they cannot be described using the steady-state nucleation rate. Therefore, an effective nucleation rate was introduced. Besides, the flash-annealing process rises the application potential of BMGs. The microstructure of BMG composites comprised of uniformly distributed crystals and the glass, can be reliably tailored. Thus, flash-annealing constitutes a novel method to design the mechanical properties of BMG composites in a reproducible manner for the first time. BMG composites, which exhibit high strength, large plasticitiy and as in the case of B2 CuZr BMG composites as well work-hardening behaviour, can be prepared, so that the intrinsic brittleness of monolithic BMGs is effectively overcome.
18

Zr-based Bulk Metallic Glass A Study Of Processing, Welding And Subsurface Deformation Mechanism

Bhowmick, Ranadeep 07 1900 (has links) (PDF)
No description available.
19

Production, Characterization and Electrochemical Properties of Advanced Bulk Metallic Glasses for Hip Implant Applications

Tabeshian, Ali January 2011 (has links)
The aim of the present project was to investigate the possibilities of using a Zr55Cu30Ni5Al10 Bulk Metallic Glass (BMG) alloy as articulating surface in an artificial hip joint. In order for a material to be used in human body as an implant, the foremost requirement is the acceptability by the human body. The implantations should not cause diseases or other complications for the patients. Moreover, the biomaterials should possess sufficient mechanical strength, high corrosion and wear resistance in harsh body environment with varying loading conditions. There have been extensive research on the properties of stainless steel, Co-Cr-Mo alloys and Ti alloys regarding their bio-compatibility and they are currently being used as orthopedic implants, however less information is available for bulk metallic glasses. So, understanding the corrosion properties of BMGs is one of the key issues to evaluate their potential as biomaterials. In the first phase of the project there was an attempt to develop a Zr-based BMG from pure elements in a vertical resistance furnace and quenching in liquid nitrogen. Afterwards, samples were examined by X-Ray diffraction and microscopically to investigate the presence of crystalline phases.  The second phase was electrochemical measurements to study the passivation behavior and the susceptibility to pitting corrosion for the crystalline Zr55Cu30Ni5Al10, amorphous Zr55Cu30Ni5Al10 BMG (received from Japan) and comparing the result with stainless steel and Co-Cr-Mo (F75). Investigations on corrosion properties were made in phosphate-buffered saline (PBS) with and without the addition of albumin fraction V, at a room temperature of 20 °C and body temperature (37°C) and in different pH values of 7.4 and 5.2. Running the experiment in lower pH shows the behavior of the implant against any probable inflation in the patient body. The last phase was to investigate the interaction between the protein and surface of materials. For this purpose, FTIR spectroscopy and Electrochemical Impedance Spectroscopy (EIS) were carried out.
20

Amorphous Phase Formation In Mechanically Alloyed Fe-based Systems.

Sharma, Satyajeet 01 January 2008 (has links)
Bulk metallic glasses have interesting combination of physical, chemical, mechanical, and magnetic properties which make them attractive for a variety of applications. Consequently there has been a lot of interest in understanding the structure and properties of these materials. More varied applications can be sought if one understands the reasons for glass formation and the methods to control them. The glass-forming ability (GFA) of alloys can be substantially increased by a proper selection of alloying elements and the chemical composition of the alloy. High GFA will enable in obtaining large section thickness of amorphous alloys. Ability to produce glassy alloys in larger section thicknesses enables exploitation of these advanced materials for a variety of different applications. The technique of mechanical alloying (MA) is a powerful non-equilibrium processing technique and is known to produce glassy (or amorphous) alloys in several alloy systems. Metallic amorphous alloys have been produced by MA starting from either blended elemental metal powders or pre-alloyed powders. Subsequently, these amorphous alloy powders could be consolidated to full density in the temperature range between the glass transition and crystallization temperatures, where the amorphous phase has a very low viscosity. This Dissertation focuses on identifying the various Fe-based multicomponent alloy systems that can be amorphized using the MA technique, studying the GFA of alloys with emphasis on improving it, and also on analyzing the effect of extended milling time on the constitution of the amorphous alloy powder produced at earlier times. The Dissertation contains seven chapters, where the lead chapter deals with the background, history and introduction to bulk metallic glasses. The following four chapters are the published/to be published work, where the criterion for predicting glass formation, effect of Niobium addition on glass-forming ability (GFA), lattice contraction on amorphization, effect of Carbon addition on GFA, and observation of mechanical crystallization in Fe-based systems have been discussed. The subsequent chapter briefly mentions about the consolidation of amorphous powders and presents results of hot pressing and spark plasma sintering on one of the alloy systems. The final chapter summarizes the Dissertation and suggests some prospective research work that can be taken up in future. The Dissertation emphasizes the glass-forming ability, i.e., the ease with which amorphization can occur. In this work the milling time required for amorphization was the indicator/measure of GFA. Although the ultimate aim of this work was to consolidate the Fe-based amorphous alloy powders into bulk so as to undertake mechanical characterization, however, it was first necessary to study the glass forming aspect in the different alloy systems. By doing this a stage has been reached, where different options are available with respect to amorphous phase-forming compositions and the knowledge to improve glass-forming ability via the mechanical alloying technique. This will be ultimately useful in the powder compaction process into various shapes and sizes at optimum pressure and temperature. The study on mechanical crystallization indicates, or in a way defines, a limit to the process of amorphization, and it was also demonstrated that this phenomenon is more common in occurrence than and not as restricted as it was earlier reported to be.

Page generated in 0.1004 seconds