• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 12
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 23
  • 22
  • 20
  • 20
  • 19
  • 17
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Wind- and Buoyancy-modulated Along-shore Circulation over the Texas-Louisiana Shelf

Zhang, Zhaoru 16 December 2013 (has links)
Numerical experiments are used to study the wind- and buoyancy-modulated along-shore circulation over the Texas-Louisiana continental shelf inshore of 50-m water depth. Most attention is given to circulation in the non-summer flow regime. A major focus of this study is on a unique along-shore flow phenomenon – convergent along- shore flows, which is controlled jointly by wind forcing and buoyancy fluxes from the Mississippi-Atchafalaya river plume. The second problem addresses the forcing effect of buoyancy on the general along-shore circulation pattern over the shelf in non-summer. The convergent along-shore flows are characterized by down-coast flow from the northern shelf encountering up-coast flow from the southern shelf. This phenomenon is explored for both weather band and seasonal timescales. For the weather band, investigations are focused on non-summer convergent events. The formation of convergent flows is primarily caused by along-coast variation in the along-shore component of wind forcing, which in turn is due to the curvature of the Texas-Louisiana coastline. In general, along-shore currents are well correlated with along-shore winds. However, the points of convergence of currents and winds are not co-located; but rather, points of convergence of currents typically occur down-coast of points of convergence of wind. This offset is mainly caused by buoyancy forcing that forces down-coast currents and drives the point of convergence of currents further down-coast. No specific temporal shift pattern is found for the weather-band convergence, whereas monthly
12

Computational modelling of buoyancy-driven displacement ventilation flows

Chang, Chun-Chuan January 2016 (has links)
The study of the buoyancy–driven displacement ventilation flows has been conducted earlier through both mathematical modelling and experiments. There can be some assumptions made in the studies for thermal analysis such as: adiabatic boundaries, neglecting radiation heat transfer between wall surfaces, and neglecting the absorptivity of the air on simulating the thermal distribution within the ventilated spaces. This study considers heat conduction at boundaries, heat radiation between wall surfaces and radiative absorptivity of the air when modelling buoyancy-driven displacement ventilation flows. The simulations were carrying out using computational fluid dynamic (CFD) programme Star-CCM+. This study investigates the influence of the absorptivity of the air on thermal distribution within an enclosure ventilated by buoyancy-driven displacement ventilation flows. Two cases of buoyancy-driven displacement ventilation experiments conducted early by Sandbach (2009) and Li et al. (1993b) were modelled. To consider the absorptivity of the air, the local weather data were retrieved and were used for calculating the absorption coefficient of the air under different weather conditions. The participating media radiation model was employed to compute the radiation heat absorbed by the air. In addition, the performances of the turbulence models on modelling buoyancy-driven displacement ventilation flows were investigated to ensure the predicted results were accurate and satisfactory. The simulation results presented in this study have shown to agree well with the experimental data in two different experiment cases. In the case of the experiments conducted by Sandbach and Lane-Serff (2011b), the predicted results match well with the measurements when considering absorptivity of the air. The errors between the simulation results and the measurements were less than 10% in most cases. The results also suggest that the absorption coefficient has an influence on ventilation flow rate and consequently has an effect on the strength of the stratification. This indicates that the absorption coefficient should be determined according to the conditions rather than be given an one-and-for-all value. The simulation results have also shown to agree well with the measurements given in the literature presented by Li et al. (1993b). The effect of the absorptivity was shown to be more significant in the case of high supply airflow temperature or high supply heat load. Hence, radiative absorptivity of the air should be taken into account in order to accurately model the thermal distribution in the ventilated enclosure.
13

Velocity, temperature and turbulence measurements in air under combined free and forced convection conditions

Connor, Michael Anthony 18 September 2019 (has links)
This thesis reports the results of an experimental investigation of the effect of buoyancy forces on turbulent upflow of air in a vertical pipe under condit.io:1s of constant wall heat flux at Reynolds numbers of 5000 to 14000. Preliminary velocity and axial turbulence intensity measurements in isothermal flows for Reynolds numbers of 5000 to 32000 are also reported. Velocity and temperature distributions were measured over a range of heat fluxes at Reynolds numbers of approximately 5000 and 8000 and at a single heat flux at a Reynolds number of 14000.
14

Using large eddy simulation to model buoyancy-driven natural ventilation

Durrani, Faisal January 2013 (has links)
The use of Large Eddy Simulation (LES) for modelling air flows in buildings is a growing area of Computational Fluid Dynamics (CFD). Compared to traditional CFD techniques, LES provides a more detailed approach to modelling turbulence in air. This offers the potential for more accurate modelling of low energy natural ventilation which is notoriously difficult to model using traditional CFD. Currently, very little is known about the performance of LES for modelling natural ventilation, and its computational intensity makes its practical use on desk top computers prohibitive. The objective of this work was to apply LES to a variety of natural ventilation strategies and to compile guidelines for practitioners on its performance, including the trade-off between accuracy and cost.
15

Long-range electrothermal fluid motion in microfluidic systems

Lu, Yi, Ren, Qinlong, Liu, Tingting, Leung, Siu Ling, Gau, Vincent, Liao, Joseph C., Chan, Cho Lik, Wong, Pak Kin 07 1900 (has links)
AC electrothermal flow (ACEF) is the fluid motion created as a result of Joule heating induced temperature gradients. ACEF is capable of performing major microfluidic operations, such as pumping, mixing, concentration, separation and assay enhancement, and is effective in biological samples with a wide range of electrical conductivity. Here, we report long-range fluid motion induced by ACEF, which creates centimeter-scale vortices. The long-range fluid motion displays a strong voltage dependence and is suppressed in microchannels with a characteristic length below similar to 300 mu m. An extended computational model of ACEF, which considers the effects of the density gradient and temperature-dependent parameters, is developed and compared experimentally by particle image velocimetry. The model captures the essence of ACEF in a wide range of channel dimensions and operating conditions. The combined experimental and computational study reveals the essential roles of buoyancy, temperature rise, and associated changes in material properties in the formation of the long-range fluid motion. Our results provide critical information for the design and modeling of ACEF based microfluidic systems toward various bioanalytical applications. (C) 2016 Elsevier Ltd. All rights reserved.
16

A Numerical Study of Unsteady Natural Convection in a Rectangular Enclosure -- The Effect of Variable Thermodynamic and Transport Properties

Chidurala, Manohar 06 August 2009 (has links)
A two-dimensional mathematical model is adopted to investigate the development of buoyancy driven circulation patterns and temperature contours inside a rectangular enclosure filled with a compressible fluid where one of the vertical walls of the enclosure is kept at a higher temperature than the opposite one. Fluid thermodynamic and transport properties are assumed to be functions of temperature. The governing equations are discretized using second order accurate differencing for spatial and temporal derivatives and then linearized using Newton's linearization method. The resulting set of algebraic equations is solved using the Coupled Modified Strongly Implicit Procedure for the unknowns of the problem. The results of this study show that the variable property model predicts lower values for wall heat fluxes and Nu number than the constant property one for Rayleigh numbers between 104 and 105.
17

Hull Shape Optimization for Wave Resistance Using Panel Method

Karri, Krishna M. 14 May 2010 (has links)
A ship must be designed for efficiency and economy, thus there is an everlasting desire for the design of better and better ships. One of the important factors which directly influence the worthiness of a design is its resistance. Throughout decades of ship design, the resistance is given top most importance as a design objective. With the increase in computational speeds of both software and hardware, there has been an opportunity for optimizing ship hulls using iterative methods of design and modification. A method for calculating resistance for a given hull geometry and to optimize it using optimization algorithms are required for achieving better hulls. The resistance is calculated using a panel method for a given hull and the hull geometry is later changed by applying Lackenby's method of longitudinal shift of stations. An optimization algorithm extracts the best possible design out of the numerous design alternatives possible.
18

Mixing and dispersion of a small estuarine plume

Sheridan, Megan January 2018 (has links)
Entrainment velocity, salt flux and the turbulent diffusivity of salt are estimated in the outflow of a small, radially spreading buoyant outflow, just outside of the Teign Estuary mouth, as a means to compare mixing dynamics between very small and larger-scale estuarine and river plumes, and build on a scant knowledge base regarding the former. The analysis was made using a control volume approach, based on the conservation of momentum, volume and salt, from a Lagrangian perspective. Drifting buoys were used to accomplish this. The analysis was based on that employed by McCabe et al. (2008), with some modifications to fit a small-scale outflow, namely: repeat deployments, shorter drifter tracks, and deployment-specific criteria used for choosing the plume base, a step in the analysis used to calculate vertical entrainment, flux and diffusivity. In addition, temperature was used as a proxy for salinity, and this is evaluated in the results. Overall results were compared to a similar study, which was conducted in the Columbia River plume, a system much larger in scale to the Teign. Drifter experiments were conducted on multiple days, under different conditions (i.e. wind, tides, river flow), and those results are discussed briefly, but the focus is on one specific day, April 3, 2014, where conditions most closely matched those of the comparison study, and those results are compared between the two systems. Entrainment velocity was measured along the drifter tracks, in the near-field plume, where shear-induced mixing dominates. Drifter track subsections were chosen so as to avoid source or frontal dynamics, the plume base was chosen for individual deployments as the plume dynamics could change relatively quickly, and repeat deployments were conducted as a way to look at near-field plume evolution over the course of the ebb (and with a smaller plume, time allowed for this) . On April 3, the mean value for entrainment velocity for the four deployments chosen in the Teign outflow was 4.3 x 10-4 ms-1. The mean cast value was slightly higher at 7.6 x 10-4 ms-1, as casts values were typically measured at the beginning of the drifter tracks. Entrainment values at the cast sites were calculated in the same way as the track values, taking plume thickness from hydrographic casts, as a means to evaluate accuracy of track values, which are based on a modelled plume thickness. A rough estimate for the mean entrainment velocity for one pair of drifters used in the Columbia River was 9 x 10-4 ms-1, approximately double that of the Teign, but within the same order of magnitude. Salt flux values ranged from 0-5 x 10-2 psu ms-1 and from 0-3 x 10-2 psu ms-1 for the Teign and the Columbia, respectively, and diffusivities ranged from 0.5-5.8 x 10-2 m2s-1 and from 0.2-9.6 x 10-3 m2s-1. With a similar range of entrainment and salt flux values, and almost an order of magnitude difference between diffusivity values, it was determined that weaker density gradients in the Teign are responsible for the latter, and that this increased level of mixing results in a larger horizontal horizontal salinity gradient, which balances out the terms in the entrainment equation that are related solely to the physical size of the system (i.e. plume thickness, velocity and the vertical salinity gradient). This higher level of mixing of a smaller physical entity, supports the view that smaller plumes mix more thoroughly over a shorter timescale, resulting in a larger impact to the local environment into which they flow.
19

Theoretical models of buoyancy-induced flow in rotating cavities

Tang, Hui January 2017 (has links)
Calculation of the blade tip clearances of the high-pressure-compressor rotors in aeroengines involves calculating the radial growth of the corotating compressor discs. This requires the calculation of the thermal growth of the discs, which in turn requires a knowledge of the disc temperatures and Nusselt numbers for the buoyancy-induced flow in the cavity between the discs. This is a strongly conjugate problem in which the equations for the fluid flow and the disc temperature are coupled. In this thesis, the buoyancy-induced flow and heat transfer inside the compressor rotors is modelled assuming laminar Ekman-layer flow on the discs and compressible flow in the fluid core between the Ekman layers; conduction in the discs is modelled using a one-dimensional fin equation. The theoretical predictions are compared with Nusselt numbers and temperatures obtained from two independent sets of temperature measurements, obtained on a multi-cavity compressor rig, and the ‘experimental’ Nusselt numbers were calculated using a Bayesian model for the inverse solution of the fin equation. For most of the experimental cases, with Grashof numbers up to 1012, mainly good agreement was achieved between the theoretical predictions and experimental values of the disc temperatures and Nusselt numbers. As predicted by the model, increasing the rotational Reynolds number can, under certain conditions, cause a decrease in the Nusselt numbers. Importantly, the results suggest that laminar Ekman-layer flow could occur even at the high Grashof numbers found in the compressor rotors of aeroengines. An extension of the buoyancy model included empirical correlations for the Nusselt numbers for the compressor shroud and disc cobs. This extended model was used to predict the temperature rise of the axial throughflow of cooling air in the compressor rotor, and reasonable agreement was achieved between the predicted and measured throughflow temperatures. This is the first time a theoretical model (rather than CFD) has been used to predict the temperatures of a compressor disc and the axial throughflow, and the model takes only seconds to predict the temperatures that would take days or even weeks to predict using CFD. Some suggestions are made for future research to improve the extent and accuracy of the model.
20

A Concept of Buoyancy in Topological Spaces, with Applications to the Foundations of Real Variables

Cutler, Elwyn David 01 May 1969 (has links)
The Buoyancy Theorem states that a compact set is buoyant if every point of the compact set has a neighborhood whose intersection with the compact set is buoyant. In this paper, the Buoyancy Theorem is used to prove several standard results involving compact sets. The proof of such a result may be a direct application of the Buoyancy Theorem or the proof may rely on a certain compactness argument which follows from the Buoyancy Theorem. The last application in this paper is such an example. The method used is to, first of all, define a buoyancy on the compact set; secondly, show that every point of the compact set has a neighborhood whose intersection with the compact set is buoyant; and finally, apply the Buoyancy Theorem to conclude that the compact set is buoyant.

Page generated in 0.0257 seconds