• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational modelling of buoyancy-driven displacement ventilation flows

Chang, Chun-Chuan January 2016 (has links)
The study of the buoyancy–driven displacement ventilation flows has been conducted earlier through both mathematical modelling and experiments. There can be some assumptions made in the studies for thermal analysis such as: adiabatic boundaries, neglecting radiation heat transfer between wall surfaces, and neglecting the absorptivity of the air on simulating the thermal distribution within the ventilated spaces. This study considers heat conduction at boundaries, heat radiation between wall surfaces and radiative absorptivity of the air when modelling buoyancy-driven displacement ventilation flows. The simulations were carrying out using computational fluid dynamic (CFD) programme Star-CCM+. This study investigates the influence of the absorptivity of the air on thermal distribution within an enclosure ventilated by buoyancy-driven displacement ventilation flows. Two cases of buoyancy-driven displacement ventilation experiments conducted early by Sandbach (2009) and Li et al. (1993b) were modelled. To consider the absorptivity of the air, the local weather data were retrieved and were used for calculating the absorption coefficient of the air under different weather conditions. The participating media radiation model was employed to compute the radiation heat absorbed by the air. In addition, the performances of the turbulence models on modelling buoyancy-driven displacement ventilation flows were investigated to ensure the predicted results were accurate and satisfactory. The simulation results presented in this study have shown to agree well with the experimental data in two different experiment cases. In the case of the experiments conducted by Sandbach and Lane-Serff (2011b), the predicted results match well with the measurements when considering absorptivity of the air. The errors between the simulation results and the measurements were less than 10% in most cases. The results also suggest that the absorption coefficient has an influence on ventilation flow rate and consequently has an effect on the strength of the stratification. This indicates that the absorption coefficient should be determined according to the conditions rather than be given an one-and-for-all value. The simulation results have also shown to agree well with the measurements given in the literature presented by Li et al. (1993b). The effect of the absorptivity was shown to be more significant in the case of high supply airflow temperature or high supply heat load. Hence, radiative absorptivity of the air should be taken into account in order to accurately model the thermal distribution in the ventilated enclosure.
2

Buoyant Plumes with Inertial and Chemical Reaction-driven Forcing

Rogers, Michael C. 01 September 2010 (has links)
Plumes are formed when a continuous buoyant forcing is supplied at a localized source. Buoyancy can be created by either a heat flux, a compositional difference between the fluid coming from the source and its surroundings, or a combination of both. In this thesis, two types of laminar plumes with different forcing mechanisms were investigated: forced plumes and autocatalytic plumes. The forced plumes were compositionally buoyant and were injected with inertial forcing into a fluid filled tank. The autocatalytic plumes were produced without mechanical forcing by buoyancy that was entirely the consequence of a nonlinear chemical reaction -- the iodate-arsenous acid (IAA) reaction. This reaction propagates as a reacting front and produces buoyancy by its exothermicity, and by the compositional difference between the reactant and product. Both the forced and autocatalytic plumes were examined in starting and steady states. The starting, or transient, state of the plume occurs when it initially rises through a fluid and develops a plume head on top of a trailing conduit. The steady state emerges after the plume head has risen to the top of a fluid filled tank leaving only a persistent conduit. Plume behaviour was studied through experimentation, simulation, and by using simple theoretical analysis. We performed the first ever study of plumes as they crossed over the transition between buoyancy-driven to momentum-driven flow. Regardless of the driving mechanism, forced plumes were found to exhibit a single power law relationship that explains their ascent velocity. However, the morphology of the plume heads was found to depend on the dominating driving mechanism. Confined heads were produced by buoyancy-driven plumes, and dispersed heads by momentum-driven plumes. Autocatalytic plumes were found to have rich dynamics that are a consequence of the interplay between fluid flow and chemical reaction. These plumes produced accelerating heads that detached from the conduit, forming free vortex rings. A second-generation head would then develop at the point of detachment. The detachment process for plumes was sensitively dependent on small fluctuations in their initial formation. In some cases, head detachment could occur multiple times for a single experimental run, thereby producing several generations of autocatalytic vortex rings. Head detachment was reproduced and studied using autocatalytic plume simulations. Autocatalytic flame balls, a phenomenon closely related to autocatalytic plumes, were also simulated. Flame balls were found to have three dynamical regimes. Below a critical radius, the smallest flame balls experienced front death. Above this radius, they formed elongating, reacting tails. The largest flame balls formed filamentary tails unable to sustain a reaction.
3

Buoyant Plumes with Inertial and Chemical Reaction-driven Forcing

Rogers, Michael C. 01 September 2010 (has links)
Plumes are formed when a continuous buoyant forcing is supplied at a localized source. Buoyancy can be created by either a heat flux, a compositional difference between the fluid coming from the source and its surroundings, or a combination of both. In this thesis, two types of laminar plumes with different forcing mechanisms were investigated: forced plumes and autocatalytic plumes. The forced plumes were compositionally buoyant and were injected with inertial forcing into a fluid filled tank. The autocatalytic plumes were produced without mechanical forcing by buoyancy that was entirely the consequence of a nonlinear chemical reaction -- the iodate-arsenous acid (IAA) reaction. This reaction propagates as a reacting front and produces buoyancy by its exothermicity, and by the compositional difference between the reactant and product. Both the forced and autocatalytic plumes were examined in starting and steady states. The starting, or transient, state of the plume occurs when it initially rises through a fluid and develops a plume head on top of a trailing conduit. The steady state emerges after the plume head has risen to the top of a fluid filled tank leaving only a persistent conduit. Plume behaviour was studied through experimentation, simulation, and by using simple theoretical analysis. We performed the first ever study of plumes as they crossed over the transition between buoyancy-driven to momentum-driven flow. Regardless of the driving mechanism, forced plumes were found to exhibit a single power law relationship that explains their ascent velocity. However, the morphology of the plume heads was found to depend on the dominating driving mechanism. Confined heads were produced by buoyancy-driven plumes, and dispersed heads by momentum-driven plumes. Autocatalytic plumes were found to have rich dynamics that are a consequence of the interplay between fluid flow and chemical reaction. These plumes produced accelerating heads that detached from the conduit, forming free vortex rings. A second-generation head would then develop at the point of detachment. The detachment process for plumes was sensitively dependent on small fluctuations in their initial formation. In some cases, head detachment could occur multiple times for a single experimental run, thereby producing several generations of autocatalytic vortex rings. Head detachment was reproduced and studied using autocatalytic plume simulations. Autocatalytic flame balls, a phenomenon closely related to autocatalytic plumes, were also simulated. Flame balls were found to have three dynamical regimes. Below a critical radius, the smallest flame balls experienced front death. Above this radius, they formed elongating, reacting tails. The largest flame balls formed filamentary tails unable to sustain a reaction.
4

Exploring Alternative Designs for Solar Chimneys using Computational Fluid Dynamics

Heisler, Elizabeth Marie 08 October 2014 (has links)
Solar chimney power plants use the buoyancy-nature of heated air to harness the Sun's energy without using solar panels. The flow is driven by a pressure difference in the chimney system, so traditional chimneys are extremely tall to increase the pressure differential and the air's velocity. Computational fluid dynamics (CFD) was used to model the airflow through a solar chimney. Different boundary conditions were tested to find the best model that simulated the night-time operation of a solar chimney assumed to be in sub-Saharan Africa. At night, the air is heated by the energy that was stored in the ground during the day dispersing into the cooler air. It is necessary to model a solar chimney with layer of thermal storage as a porous material for FLUENT to correctly calculate the heat transfer between the ground and the air. The solar collector needs to have radiative and convective boundary conditions to accurately simulate the night-time heat transfer on the collector. To correctly calculate the heat transfer in the system, it is necessary to employ the Discrete Ordinates radiation model. Different chimney configurations were studied with the hopes of designing a shorter solar chimney without decreases the amount of airflow through the system. Clusters of four and five shorter chimneys decreased the air's maximum velocity through the system, but increased the total flow rate. Passive advections wells were added to the thermal storage and were analyzed as a way to increase the heat transfer from the ground to the air. / Master of Science
5

The Application of the Solar Chimney for Ventilating Buildings

Park, David 09 November 2016 (has links)
This study sought to demonstrate the potential applications of the solar chimney for the naturally ventilating a building. Computational fluid dynamics (CFD) was used to model various room configurations to assess ventilation strategies. A parametric study of the solar chimney system was executed, and three-dimensional simulations were compared and validated with experiments. A new definition for the hydraulic diameter that incorporated the chimney geometry was developed to predict the flow regime in the solar chimney system. To mitigate the cost and effort to use experiments to analyze building energy, a mathematical approach was considered. A relationship between small- and full-scale models was investigated using non-dimensional analysis. Multiple parameters were involved in the mathematical model to predict the air velocity, where the predictions were in good agreement with experimental data as well as the numerical simulations from the present study. The second part of the study considered building design optimization to improve ventilation using air changes per hour (ACH) as a metric, and air circulation patterns within the building. An upper vent was introduced near the ceiling of the chimney system, which induced better air circulation by removing the warm air in the building. The study pursued to model a realistic scenario for the solar chimney system, where it investigated the effect of the vent sizes, insulation, and a reasonable solar chimney size. It was shown that it is critical to insulate the backside of the absorber and that the ratio of the conditioned area to chimney volume should be at least 10. Lastly, the application of the solar chimney system for basement ventilation was discussed. Appropriate vent locations in the basement were determined, where the best ventilation was achieved when the duct inlet was located near the ceiling and the exhaust vent was located near the floor of the chimney. Sufficient ventilation was also achieved even for scenarios of a congested building when modeling the presence of multiple people. / Ph. D. / Energy consumption is an important issue and has become a great concern during the last few decades, where most energy consumption is utilized for conditioning buildings. Natural ventilation is a method to provide fresh air into the building as well as save energy. The solar chimney system is a natural ventilation technique that utilizes solar energy to ventilate buildings. This study sought to demonstrate the potential applications of the solar chimney to naturally ventilate a building. Computational fluid dynamics (CFD) was used to model various room configurations to assess ventilation strategies. This study presented a computational model to study the performance of a solar chimney system in buildings. To mitigate the cost and effort to use experiments to analyze building energy, a mathematical approach was considered, and relationships between small- and full-scale models were developed. The air velocity through the window was predicted using the geometry of the solar chimney system and building, and outdoor conditions, where the predictions agreed well with the experimental data as well as the numerical simulations from the present study. In the second part of the study, building designs were modified to improve ventilation rate and thermal condition of the building. Additionally, multiple factors (insulation, vent sizes, and solar chimney size) were considered in an effort to examine the performance of the solar chimney system in a realistic scenario. Lastly, the application of the solar chimney system for basement ventilation was discussed. Appropriate vent locations in the basement were determined, where the best ventilation was achieved when the duct inlet was located near the ceiling and the exhaust vent was located near the floor of the chimney. Sufficient ventilation was also achieved even for scenarios of a congested building when modeling the presence of multiple people.
6

Reliability of CFD for buoyancy driven flows in industrial applications

Zaidi, Imama January 2013 (has links)
With the current development of the computer industry, CFD simulations have become the widespread standard in the industry, forming a baseline tool for numerous designs and safety procedures. This extensive dependence on the CFD codes rather than experiments raises the issue of the reliability of the results obtained from these codes. This thesis is intended to study the dependence of the CFD results on the grid types, numerical schemes and turbulence models. Additionally, comparisons between a general purpose commercial code STAR-CCM+ and a specialized code FDS are presented towards the end of this thesis. To study the numerical errors introduced by the grids and schemes, a laminar flow induced by natural convection inside a square cavity was considered first. Using Richardson’s extrapolation, a grid independent solution was calculated and compared with the results obtained from different grid types and schemes for Rayleigh (Ra) numbers , and . Comparison plots showed a higher dependence of the accuracy of the results on the cell shapes along with the order of the scheme and the cell size. Additionally, with the same cavity a grid dependence study for the and model has been done at .To test the reliability of the Quasi-DNS performed by an Unstructured Finite Volume (FV) CFD code, Turbulent Kinetic Energy (TKE) budgets should be calculated. User subroutines were developed to calculate the budgets of the TKE and to verify the user subroutines, prior to coaxial cylinder test case, a Q-DNS of the channel flow at has been performed using different grid configurations and numerical schemes. Results obtained from the Q-DNS of the channel flow on the polyhedral cells with the bounded central differencing scheme were found to be in good agreement with the reference DNS data. After the validation test case, a Q-DNS of the buoyancy driven turbulent flow inside a horizontal annular cavity at a high Rayleigh number, Ra = 1.18x109 with outer to inner cylinder ratio of 4.85 was carried out using a commercial code. Comparisons of Q-DNS results with low-Re URANS models, and model, showed that the latter models are able to capture the general flow features but fail to predict the large unsteadiness and high turbulence levels in the plume. However, local heat transfer rates along the inner and outer cylinder walls are on average of acceptable accuracy for engineering purposes. Finally, a full scale industrial test case of a fire in a compartment has been simulated. Both URANS ( model) and LES (Smagorinsky model) approaches are applied to model the turbulence with and without incorporating the combustion modelling. A comparison of the CFD results with the experimental data showed that for building fire simulations, accuracy of the results is more sensitive to the correlations used in the combustion modelling rather than the type of the turbulence model.
7

Numerical Analysis of Airflow and Output of Solar Chimney Power Plants

Stockinger, Christopher Allen 29 June 2016 (has links)
Computational fluid dynamics was used to simulate solar chimney power plants and investigate modeling techniques and expected energy output from the system. The solar chimney consists of three primary parts: a collector made of a transparent material such as glass, a tower made of concrete located at the center of the collector, and a turbine that is typically placed at the bottom of the tower. The collector absorbs solar radiation and heats the air below, whereby air flows inward towards the tower. As air exits at the top of the tower, more air is drawn below the collector repeating the process. The turbine converts pressure within the flow into power. The study investigated three validation cases to numerically model the system properly. Modeling the turbine as a pressure drop allows for the turbine power output to be calculated while not physically modeling the turbine. The numerical model was used to investigate air properties, such as velocity, temperature, and pressure. The results supported the claim that increasing the energy into the system increased both the velocities and temperatures. Also, increasing the turbine pressure drop decreases the velocities and increases the temperatures within the system. In addition to the numerical model, analytical models representing the vertical velocity without the turbine and the maximum power output from a specific chimney were used to investigate the effects on the flow when varying the geometry. Increasing the height of the tower increased the vertical velocity and power output, and increasing the diameter increased the power output. Dimensionless variables were used in a regression analysis to develop a predictive equation for power output. The predictive equation was tested with new simulations and was shown to be in very good agreement. / Master of Science
8

Development and assessment of CFD models including a supplemental program code for analyzing buoyancy-driven flows through BWR fuel assemblies in SFP complete LOCA scenarios

Artnak, Edward Joseph 31 January 2013 (has links)
This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-of-coolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based control-volume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy. / text

Page generated in 0.0528 seconds