• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 10
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Performance Analysis of Solar Chimney Passive Ventilation System in the Unt Zero Energy Lab

Talele, Suraj H. 08 1900 (has links)
The purpose of this investigation is to find out suitability of the solar chimney natural ventilation system in a Zero Energy Lab located at the University of North Texas campus, to figure out performance of the solar chimney. Reduction in the heating and ventilation and air conditioning energy consumption of the house has been also analyzed. The parameters which are considered for investigation are volumetric flow rate of outlet of chimney, the absorber wall temperature and glass wall temperatures. ANSYS FLUENT 14.0 has been employed for the 3-D modeling of the solar chimney. The dimensions of the solar chimney are 14’2” X 7’4” X 6’11”. The flow inside solar chimney is found to be laminar and the simulation results show that maximum outlet volumetric flow rate of about 0.12m3/s or 432 cfm is possible from chimney. The experimental velocity of chimney was found to be 0.21 m/s. Density Boussinesq approximation is considered for the modeling. Velocity and temperature sensors have been installed at inlet and outlet of the chimney in order to validate the modeling results. It is found that based on simulated volumetric flow rate that cooling load of 9.29 kwh can be saved and fan power of 7.85 Watts can be saved.
2

Thermal performance analysis of a PCM combined solar chimney system for natural ventilation and heating/cooling

Li, Y. January 2013 (has links)
Solar chimney is an important passive design strategy to maximize solar gain to enhance buoyancy effect for achieving adequate air flow rate and a desired level of thermal comfort inside a building. Therefore, solar chimney has the potential advantages over mechanical ventilation systems in terms of energy requirement, economic and environmental benefits. The main aim of this project is to study the technical feasibility of a solar chimney incorporating latent heat storage (LHS) system for domestic heating and cooling applications. The research work carried out and reported in this thesis includes: the development of a detailed theoretical model to calculate the phase change material (PCM) mass for solar chimney under specific climatic condition, the development of a CFD model to optimise the channel depth and the inlet and outlet sizes for the solar chimney geometry, experimental and numerical investigations of the thermal performance of the proposed system using a prototype set-up, a parametric study on the proposed system to identify significant parameters that affect the system performance was carried out by using the verified numerical model. The numerical and experimental study showed that the numerical model has the ability to calculate the PCM mass for the proposed system for the given weather conditions. The optimum PCM should be selected on the basis of its melting temperature, rather than its other properties such as latent heat. The experimental work on the thermal performance of the proposed system has been carried out. The results indicated that the LHS based solar chimney is technically viable. The outlet air temperature and the air flow rate varied within a small range during phase change transition period which are important for a solar air heating system. A numerical model was developed to reproduce the experimental conditions in terms of closed mode and open mode. The model results were in a close agreement with the experimental results particularly the simulated results for the discharging process. With the verified model, a comprehensive parametric analysis intended to optimise the thermal performance of proposed the system was performed. The results analysed are quantified in terms of charging/discharging time of the PCM, temperature difference between outlet air and inlet air of the solar chimney, and mass flow rate of the chimney, which are the most important quantities of the proposed system.
3

Wind- Chimney (Integrating the Principles of a Wind-Catcher and a Solar-Chimney to Provide Natural Ventilation)

Tavakolinia, Fereshteh 01 December 2011 (has links)
WIND-CHIMNEY Integrating the principles of a wind-catcher and a solar chimney to provide natural ventilation Fereshteh Tavakolinia Abstract This paper suggests using a wind-catcher integrated with a solar-chimney in a single story building so that the resident might benefit from natural ventilation, a passive cooling system, and heating strategies; it would also help to decrease energy use, CO2 emissions, and pollution. This system is able to remove undesirable interior heat pollution from a building and provide thermal comfort for the occupant.The present study introduces the use of a solar-chimney with an underground air channel combined with a wind-catcher, all as part of one device. Both the wind-catcher and solar chimney concepts used for improving a room’s natural ventilation are individually and analytically studied. This paper shows that the solar-chimney can be completely used to control and improve the underground cooling system during the day without any electricity. With a proper design, the solar-chimney can provide a thermally comfortable indoor environment for many hours during hot summers. The end product of this thesis research is a natural ventilation system and techniques that improve air quality and thermal comfort levels in a single story building. The proposed wind-chimney could eventually be designed for use in commercial, retail, and multi-story buildings.
4

Low-energy Passive Solar Residence in Austin, Texas

Sau, Arunabha 2010 August 1900 (has links)
From the various studies, it can be concluded that the excessive summer heating and the humidity are one of the major problems of the hot, humid climatic region. The literature review for this study shows that natural ventilation alone cannot meet year long optimum indoor comfort in buildings. This research, through a design exercise, intends to verify whether a naturally ventilated house, in hot humid region of Austin, TX, can enhance its passive cooling potential through double‐walled wind catcher and solar chimney. In this research, a passive solar residence has been designed. Two designs have been explored on the chosen site: a basecase design without the wind catcher and solar chimney and another design with wind catcher and solar chimney. In the designcase, the placement of the wind catcher and the solar chimney has been designed so that a thermal siphon of airflow inside the building can be created. The design might show that there will be a natural airflow during the time of the year when natural wind does not flow. Moreover, the double walled wind catcher will resist the cool winter wind due to its shape and orientation. In the design, the placement of the wind catcher and the solar chimney has been done so that a thermal siphon inside the building can be created. Therefore, inside the home, there will be a natural airflow during the time of the year when natural wind does not flow. The double walled wind catcher has been designed and placed according to the orientation of the building in order to achieve the optimum wind flow throughout the year. The solar chimney has been placed in a certain part of the building where it can get maximum solar exposure. By comparing two cases, it can be clearly said that there will some kind of changed indoor comfort level. Since the potential of the design has been judged through perception, a computational fluid dynamics simulation analysis for a year is to be done.
5

Exploring Alternative Designs for Solar Chimneys using Computational Fluid Dynamics

Heisler, Elizabeth Marie 08 October 2014 (has links)
Solar chimney power plants use the buoyancy-nature of heated air to harness the Sun's energy without using solar panels. The flow is driven by a pressure difference in the chimney system, so traditional chimneys are extremely tall to increase the pressure differential and the air's velocity. Computational fluid dynamics (CFD) was used to model the airflow through a solar chimney. Different boundary conditions were tested to find the best model that simulated the night-time operation of a solar chimney assumed to be in sub-Saharan Africa. At night, the air is heated by the energy that was stored in the ground during the day dispersing into the cooler air. It is necessary to model a solar chimney with layer of thermal storage as a porous material for FLUENT to correctly calculate the heat transfer between the ground and the air. The solar collector needs to have radiative and convective boundary conditions to accurately simulate the night-time heat transfer on the collector. To correctly calculate the heat transfer in the system, it is necessary to employ the Discrete Ordinates radiation model. Different chimney configurations were studied with the hopes of designing a shorter solar chimney without decreases the amount of airflow through the system. Clusters of four and five shorter chimneys decreased the air's maximum velocity through the system, but increased the total flow rate. Passive advections wells were added to the thermal storage and were analyzed as a way to increase the heat transfer from the ground to the air. / Master of Science
6

The Application of the Solar Chimney for Ventilating Buildings

Park, David 09 November 2016 (has links)
This study sought to demonstrate the potential applications of the solar chimney for the naturally ventilating a building. Computational fluid dynamics (CFD) was used to model various room configurations to assess ventilation strategies. A parametric study of the solar chimney system was executed, and three-dimensional simulations were compared and validated with experiments. A new definition for the hydraulic diameter that incorporated the chimney geometry was developed to predict the flow regime in the solar chimney system. To mitigate the cost and effort to use experiments to analyze building energy, a mathematical approach was considered. A relationship between small- and full-scale models was investigated using non-dimensional analysis. Multiple parameters were involved in the mathematical model to predict the air velocity, where the predictions were in good agreement with experimental data as well as the numerical simulations from the present study. The second part of the study considered building design optimization to improve ventilation using air changes per hour (ACH) as a metric, and air circulation patterns within the building. An upper vent was introduced near the ceiling of the chimney system, which induced better air circulation by removing the warm air in the building. The study pursued to model a realistic scenario for the solar chimney system, where it investigated the effect of the vent sizes, insulation, and a reasonable solar chimney size. It was shown that it is critical to insulate the backside of the absorber and that the ratio of the conditioned area to chimney volume should be at least 10. Lastly, the application of the solar chimney system for basement ventilation was discussed. Appropriate vent locations in the basement were determined, where the best ventilation was achieved when the duct inlet was located near the ceiling and the exhaust vent was located near the floor of the chimney. Sufficient ventilation was also achieved even for scenarios of a congested building when modeling the presence of multiple people. / Ph. D.
7

A methodology for radical innovation : illustrated by application to a radical civil engineering structure

Van Dyk, Cobus 12 1900 (has links)
Thesis (PhD (Civil Engineering))--Stellenbosch University, 2008. / Radical, far-beyond-the-norm innovation engages unknown developmental frontiers outside the familiar fields of standardised practice, requiring new and broad perspectives. This implies significant uncertainty during problem solution – the more radical, the greater the uncertainty. No systematic procedures for managing radical innovation exist. Research managers agree that traditional, standardised innovation approaches do not provide sufficient support for managers to cope with the degree of functional uncertainty typical of radical innovations. An efficient approach for delimiting and describing its uncertainties and managing the development process during the radical innovation process is sought. This thesis synthesizes a methodology for radical innovation from Systems Engineering and Management of Technology theory. Its application in a case study illustrates how it facilitates efficient strategic decision-making during radical innovation. Systems Engineering, by its comprehensive perspective, provides a valuable non-intuitive framework from which required radical innovation functionalities and uncertainties are identified, delimited, characterised and developed. Management of Technology concerns the core theory of technology; its perspective on technology provides the radical innovation process with a means of characterising and delimiting status, potential and uncertainty of functional, technological elements in the system. The resulting Radical Innovation Methodology is verified through application to an emerging renewable energy concept, the Solar Chimney Power Plant, which responds to a demand for innovation aimed at sustainable energy generation. The radically tall chimney structure required by the plant, proposed to stand 1,500 meter tall, serves as a fitting case for illustrating the methodology. Addressing and solving of challenges and uncertainties related to the radically tall structure and associated costs are required toward competence of this concept in a global energy market.
8

Qualification expérimentale des performances d'un dispositif de bardage avec lame d'air tampon et parement en bois

Mitogo Eseng, Jesus Nvé 13 March 2012 (has links)
Aujourd’hui à de nombreuses études sur la thermique du bâtiment pour réduire la consommation d’énergie tout en préservant le confort des usagers sont proposées. Le travail présenté ici met en avant les performances d’une technique d’isolation active par un dispositif de bardage extérieur de ce fait soumis au rayonnement solaire incident. L’étude expérimentale mise en oeuvre a permis de caractériser les échanges thermiques à l’intérieur de la lame d’air verticale (circulante ou non circulante), qui sont la clef de ce type de dispositif, en fonction des différents paramètres retenus comme pertinents. Le terme moteur est bien évidemment l’éclairement solaire. La distance parement extérieur mur support, i.e. l’épaisseur de la lame d’air, conditionne un rapport d’aspect et influe donc sur la vitesse de l’air circulant ou sur le volume tampon en situation non circulante et donc sur les échanges thermiques. Enfin les caractéristiques thermiques du parement extérieur, ici une lame de pin maritime ou un bois aggloméré, impactent assez fortement sur l’évolution temporelle des différentes. Une modélisation globale du comportement de la cheminée solaire que constitue le bardageet quelques simulations numériques ont permis de conforter ces différents résultats expérimentaux. On retiendra qu’en été, la solution optimale est un dispositif de bardage avec peu d’inertie thermique et un écoulement d’air rapide alors qu’en hiver, un dispositif avec inertie et sans écoulement contribue à assurer un bon volant thermique. / Today many studies on thermal building to reduce energy consumption while maintaining user comfort are proposed. The work presented here highlights the performance of an active isolation technique by means of exterior cladding thus subjected to solar radiation.The experimental study has been used to characterize the heat transfers inside the vertical cavity (air circulating or not), which are the key to this type of device, depending on various parameter staken as relevant. The driving factor is of course the solar irradiance. The thickness of the air gap induces an aspect ratio and thus affects the speed of the air flowing or the buffer volume and therefore the heat exchanges. Finally, the thermal characteristics of the cladding here maritime pine or chipboard, impact quite strongly on the temporal evolution of the different temperatures.The cladding and the vertical cavity act as a solar chimney, a global modeling of its behavior and some numerical simulations have strengthened the experimental results. We note that in summer, the optimal solution is a device of cladding with little thermal mass an drapid air flow while in winter, a device with large thermal mass and without flow helps to ensure a good thermal flywheel.
9

Improving the thermal climate of schools in semi-desert climate : A case study of solutions in La Guajira, Colombia / Förbättringar av det termiska klimatet på skolor i halvökenklimat : En fallstudie av lösningar i La Guajira, Colombia

Johansson, Michael January 2023 (has links)
As the climate changes, hot regions like La Guajira's semi-desert will become even hotter. It is projected that the average temperature in this region will increase by 2.4 ℃ over the course of this century, with a 20 % reduction in precipitation. To ensure that these areas remain habitable in the future, implementing technical solutions will be necessary to mitigate the impacts on the people living there. A field study assessed the thermal comfort at a school in Manaure, which experiences excessively high temperatures that exceed international standards for good thermal comfort. Through subjective and objective data collection, the field study concluded that the school's thermal climate would negatively impact at least 83 % of the students. The study also found that the surface temperature of desks not exposed to sunlight reached a temperature of 43 ℃. To improve thermal comfort, three potential solutions were explored. Isolating the roof reduces incoming radiation and prevents excess heat from warming the structure. Increasing the ventilation rate helps dissipate hot air, and planting trees creates a cooler supply air temperature. Two of the three measures were implemented, and the tree-planting project is ongoing. Temperatures were measured on the roof, walls, desk and floor during a hot day. Together with a survey to students and teachers to evaluate the absolute temperature and the experienced thermal comfort. The results demonstrated that isolating the roof and installing a solar chimney on the classroom's roof can significantly lower the operative temperature to 36 ℃ and 35 ℃, respectively. These improvements can improve learning by 25 % due to better thermal comfort compared to a classroom that has not been modified. As a bonus, the acoustics were also improved in classrooms, resulting in a lower echo level. Overall, the study demonstrated that it is possible to significantly improve the thermal comfort of classrooms in semi-desert regions, even those without access to electricity. An added benefit is that these solutions have a low installation cost and no operational costs. However, further research is needed to determine the impact of heat on children and whether these measures will improve their learning outcomes. / A medida que cambie el clima, las regiones cálidas como el subdesierto de La Guajira se volverán aún más calientes. Se proyecta que la temperatura promedio en esta región aumente 2,4 ℃ en el transcurso de este siglo, con una reducción del 20 % en las precipitaciones. Para garantizar que estas áreas sigan siendo habitables en el futuro, será necesario implementar soluciones técnicas para mitigar los impactos en las personas que viven allí. Un estudio de campo evaluó el confort térmico en una escuela de Manaure, que experimenta temperaturas excesivamente altas que superan los estándares internacionales de buen confort térmico. A través de la recolección de datos subjetivos y objetivos, el estudio de campo concluyó que el clima térmico de la escuela impactaría negativamente al menos al 83 % de los estudiantes. El estudio también encontró que la temperatura de la superficie de los escritorios no expuestos a la luz solar alcanzó una temperatura de 43 ℃. Para mejorar el confort térmico, se exploraron tres posibles soluciones. Aislar el techo reduce la radiación entrante y evita que el exceso de calor caliente la estructura. El aumento de la tasa de ventilación ayuda a disipar el aire caliente y la plantación de árboles crea una temperatura del aire de suministro más fría. Se implementaron dos de las tres medidas y el proyecto de plantación de árboles está en curso. Se midieron las temperaturas en el techo, las paredes, el escritorio y el piso durante un día caluroso. Junto con una encuesta a estudiantes y docentes para evaluar la temperatura absoluta y el confort térmico experimentado. Los resultados demostraron que aislar el techo e instalar una chimenea solar en el techo del aula puede reducir significativamente la temperatura operativa a 36 ℃ y 35 ℃, respectivamente. Estas mejoras pueden mejorar el aprendizaje en un 25 % debido a un mejor confort térmico en comparación con un aula que no ha sido modificada. Como beneficio adicional, también se mejoró la acústica en las aulas, lo que resultó en un nivel de eco más bajo. En general, el estudio demostró que es posible mejorar significativamente el confort térmico de las aulas en las regiones semidesérticas, incluso aquellas sin acceso a la electricidad. Un beneficio adicional es que estas soluciones tienen un bajo costo de instalación y no tienen costos operativos. Sin embargo, se necesita más investigación para determinar el impacto del calor en los niños y si estas medidas mejorarán sus resultados de aprendizaje. / När klimatet förändras kommer redan varma regioner som halvöken i La Guajira, Colombia att bli ännu varmare. Den genomsnittliga temperaturen i regionen förväntas att öka med 2,4 ℃ under det här århundradet, samtidigt som nederbörden minskar med     20 %. För att dessa områden ska vara beboeliga i framtiden kommer det vara nödvändigt att implementera tekniska lösningar för att mildra konsekvenserna för de människor som bor där. En fältstudie genomfördes för att undersöka termisk komfort på en skola i Manaure, som upplever extremt höga temperaturer vilket överskrider internationella standarder inom termisk komfort. Genom subjektiv och objektiv datainsamling konstaterade fältstudien att skolans termiska klimat kommer påverka minst 83% av eleverna negativt. Studien visade också att temperaturen på skrivborden som inte utsatts för solljus nådde 43 ℃. Temperaturer mättes på tak, väggar, skrivbord och golv under en varm dag. Tillsammans med en undersökning till elever och lärare för att utvärdera den absoluta temperaturen och den upplevda termiska komforten. För att förbättra den termiska komforten undersöktes tre olika möjligheter. Att isolera taket minskar den inkommande strålningen och förhindrar att överflödig värme värmer upp konstruktionen. Ökningen av ventilationen hjälper till att avlägsna het luft och sist även plantera träd för att skapa en svalare utomhustemperatur. Av de tre åtgärderna genomfördes två, och projektet med att plantera träd pågår. Resultaten visade att den operativa temperaturen kan sänkas till 36 ℃ om taket isoleras och ytterligare till 35 ℃ om en solskorsten installeras på taket i klassrummen. Sammantaget kan inlärningen förbättras med åtminstone 25 % jämfört med ett klassrum som inte förbättrades. En positiv bieffekt var att akustiken i klassrummen förbättrades genom mindre eko. Sammanfattningsvis visade studien att det är möjligt att betydligt förbättra den termiska komforten i klassrum i halvökenklimat, även i klassrum utan tillgång till el. En annan fördel är att dessa lösningar har en låg installationskostnad och inga driftskostnader. Dock krävs ytterligare undersökningar för att fastställa vilken påverkan värme har på barn och om dessa åtgärder kommer att förbättra deras lärande.
10

Experimental and Numerical Investigation of Solar Airflow Windows

Friedrich, Kelton E. 10 1900 (has links)
<p>Solar thermosiphons integrated into the thermal envelop of buildings has been studied for their potential to take advantage of solar energy in heating buildings. The annual performance of solar thermosiphons cannot currently be predicted with the correlations from previous research. Also, no work has been done on the supply mode of a solar thermosiphon even though it has the potential to provide heating and fresh ventilation air. An investigation was done with the goal of developing a numerical model that could predict the performance of the supply mode of a solar thermosiphon. The numerical model included infrared thermal radiation and conduction through the glass, phenomenon which had not been used in previous numerical models. To validate the numerical model a novel steady state experiment was developed. This experiment included radiation as the heat source and the ability to vary geometric lengths. The performance parameters of mass flow rate and thermal efficiency were comparable between the numerical predictions and experimental results. However, due to uncertainties in the current experimental setup, full validation of the numerical model was not possible. These uncertainties would have to be addressed before the numerical model that was developed can be fully validated and used for generating correlations. After consideration of practical implementation constrains, it was shown that it was easier to implement the indoor air curtain mode of a solar thermosiphon than the supply mode. The indoor air curtain mode provides the same amount of energy from solar radiation to heat a building as the supply mode of a solar thermosiphon.</p> / Master of Applied Science (MASc)

Page generated in 0.0425 seconds