• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neutron Spectroscopy : Instrumentation and Methods for Fusion Plasmas

Sjöstrand, Henrik January 2008 (has links)
<p>When the heavy hydrogen isotopes deuterium (D) and tritium (T) undergo nuclear fusion large amounts of energy are released. At the Joint European Torus (JET) research is performed on how to harvest this energy. Two of the most important fusion reactions, d+d→<sup>3</sup>He+n (E<sub>n</sub> = 2.5 MeV) and d+t→<sup>4</sup>He+n (E<sub>n</sub> = 14 MeV), produce neutrons. This thesis investigates how measurements of these neutrons can provide information on the fusion performance.</p><p>The Magnetic Proton Recoil (MPR) neutron spectrometer has operated at JET since 1996. The spectrometer was designed to provide measurements on the 14 MeV neutron emission in DT operation, thereby conveying information on the state of the fuel ions. However, a majority of today’s fusion experiments are performed with pure D fuel. Under such conditions, the measurements with the MPR were severely hampered due to interfering background. This prompted an upgrade of the instrument. The upgrade, described in this thesis, included a new focal plane detector, a phoswich scintillator array, and new data acquisition electronics, based on transient recorder cards. This combination allows for pulse shape discrimination techniques to be applied and a signal to background of 5/1 has been achieved in measurements of the 2.5-MeV neutrons in D experiments. The upgrade also includes a new control and monitoring system, which enables the monitoring and correction of gain variations in the spectrometer’s photo multiplier tubes. Such corrections are vital for obtaining good data quality.</p><p>In addition, this thesis describes a new method for determining the total neutron yield and hence the fusion power by using a MPR spectrometer in combination with a neutron emission profile monitor. The system has been operated at JET both during DT and D experiments. It is found that the systematic uncertainties are considerably lower (≈6 %) than for traditional systems. For a dedicated system designed for the next generation fusion experiments, i.e, ITER, uncertainties of 4 % could be attained.</p><p>Neutron spectroscopy can also be an important tool for determining the neutron emission from residual tritium in D plasmas. This information is combined with other measurements at JET in order to determine the confinement of the 1 MeV tritons from the d+d→t+p reactions.</p>
2

Neutron Spectroscopy : Instrumentation and Methods for Fusion Plasmas

Sjöstrand, Henrik January 2008 (has links)
When the heavy hydrogen isotopes deuterium (D) and tritium (T) undergo nuclear fusion large amounts of energy are released. At the Joint European Torus (JET) research is performed on how to harvest this energy. Two of the most important fusion reactions, d+d→3He+n (En = 2.5 MeV) and d+t→4He+n (En = 14 MeV), produce neutrons. This thesis investigates how measurements of these neutrons can provide information on the fusion performance. The Magnetic Proton Recoil (MPR) neutron spectrometer has operated at JET since 1996. The spectrometer was designed to provide measurements on the 14 MeV neutron emission in DT operation, thereby conveying information on the state of the fuel ions. However, a majority of today’s fusion experiments are performed with pure D fuel. Under such conditions, the measurements with the MPR were severely hampered due to interfering background. This prompted an upgrade of the instrument. The upgrade, described in this thesis, included a new focal plane detector, a phoswich scintillator array, and new data acquisition electronics, based on transient recorder cards. This combination allows for pulse shape discrimination techniques to be applied and a signal to background of 5/1 has been achieved in measurements of the 2.5-MeV neutrons in D experiments. The upgrade also includes a new control and monitoring system, which enables the monitoring and correction of gain variations in the spectrometer’s photo multiplier tubes. Such corrections are vital for obtaining good data quality. In addition, this thesis describes a new method for determining the total neutron yield and hence the fusion power by using a MPR spectrometer in combination with a neutron emission profile monitor. The system has been operated at JET both during DT and D experiments. It is found that the systematic uncertainties are considerably lower (≈6 %) than for traditional systems. For a dedicated system designed for the next generation fusion experiments, i.e, ITER, uncertainties of 4 % could be attained. Neutron spectroscopy can also be an important tool for determining the neutron emission from residual tritium in D plasmas. This information is combined with other measurements at JET in order to determine the confinement of the 1 MeV tritons from the d+d→t+p reactions.
3

Accélération de la simulation Monte Carlo du transport des neutrons dans un milieu évoluant par la méthode des échantillons corrélés / Monte Carlo burnup codes acceleration using the correlated sampling method

Dieudonné, Cyril 12 December 2013 (has links)
Depuis quelques années, les codes de calculs Monte Carlo évoluant qui couplent un code Monte Carlo, pour simuler le transport des neutrons, à un solveur déterministe, qui traite l'évolution des milieux dû à l'irradiation sous le flux neutronique, sont apparus. Ces codes permettent de résoudre les équations de Boltzmann et de Bateman dans des configurations complexes en trois dimensions et de s'affranchir des hypothèses multi-groupes utilisées par les solveurs déterministes. En contrepartie, l'utilisation du code Monte Carlo à chaque pas de temps requiert un temps de calcul prohibitif.Dans ce manuscrit, nous présentons une méthodologie originale évitant la répétition des simulations Monte Carlo coûteuses en temps et en les remplaçant par des perturbations. En effet, les différentes simulations Monte Carlo successives peuvent être vues comme des perturbations des concentrations isotopiques de la première simulation. Dans une première partie, nous présenterons donc cette méthode, ainsi que la méthode de perturbation utilisée: l'échantillonnage corrélé. Dans un second temps, nous mettrons en place un modèle théorique permettant d'étudier les caractéristiques de la méthode des échantillons corrélés afin de comprendre ses effets durant les calculs en évolution. Enfin, dans la troisième partie nous discuterons de l'implémentation de cette méthode dans TRIPOLI-4® en apportant quelques précisions sur le schéma de calcul qui apportera une accélération importante aux calculs en évolution. Nous commencerons par valider et optimiser le schéma de perturbation à travers l'étude de l'évolution d'une cellule de combustible de type REP. Puis cette technique sera utilisée sur un calcul d'un assemblage de type REP en début de cycle. Après avoir validé la méthode avec un calcul de référence, nous montrerons qu'elle peut accélérer les codes Monte Carlo évoluant standard de presque un ordre de grandeur. / For several years, Monte Carlo burnup/depletion codes have appeared, which couple Monte Carlo codes to simulate the neutron transport to deterministic methods, which handle the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3-dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the Monte Carlo solver called at each time step.In this document we present an original methodology to avoid the repetitive and time-expensive Monte Carlo simulations, and to replace them by perturbation calculations: indeed the different burnup steps may be seen as perturbations of the isotopic concentration of an initial Monte Carlo simulation. In a first time we will present this method, and provide details on the perturbative technique used, namely the correlated sampling. In a second time we develop a theoretical model to study the features of the correlated sampling method to understand its effects on depletion calculations. In a third time the implementation of this method in the TRIPOLI-4® code will be discussed, as well as the precise calculation scheme a meme to bring important speed-up of the depletion calculation. We will begin to validate and optimize the perturbed depletion scheme with the calculation of a REP-like fuel cell depletion. Then this technique will be used to calculate the depletion of a REP-like assembly, studied at beginning of its cycle. After having validated the method with a reference calculation we will show that it can speed-up by nearly an order of magnitude standard Monte-Carlo depletion codes.
4

Deep burn strategy for the optimized incineration of reactor waste plutonium in pebble bed high temperature gas–cooled reactors / Serfontein D.E.

Serfontein, Dawid Eduard. January 1900 (has links)
In this thesis advanced fuel cycles for the incineration, i.e. deep–burn, of weapons–grade plutonium, reactor–grade plutonium from pressurised light water reactors and reactor–grade plutonium + the associated Minor Actinides in the 400 MWth Pebble Bed Modular Reactor Demonstration Power Plant was simulated with the VSOP 99/05 diffusion code. These results were also compared to the standard 9 g/fuel sphere U/Pu 9.6% enriched uranium fuel cycle. The addition of the Minor Actinides to the reactor–grade plutonium caused an unacceptable decrease in the burn–up and thus an unacceptable increase in the heavy metal (HM) content in the spent fuel, which is intended for direct disposal in a deep geological repository, without chemical reprocessing. All the Pu fuel cycles failed the adopted safety limits in that either the maximum fuel temperature of 1130°C, during normal operation, or the maximum power of 4.5 kW/sphere was exceeded. All the Pu cycles also produced positive Uniform Temperature Reactivity Coefficients, i.e. the coefficient where the temperature of the fuel and the graphite moderator in the fuel spheres are varied together. these positive temperature coefficients were experienced at low temperatures, typically below 700°C. This was due to the influence of the thermal fission resonance of 241Pu. The safety performance of the weapons–grade plutonium was the worst. The safety performance of the reactor–grade plutonium also deteriorated when the heavy metal loading was reduced from 3 g/sphere to 2 g or 1 g. In view of these safety problems, these Pu fuel cycles were judged to be not licensable in the PBMR DPP–400 reactor. Therefore a redesign of the fuel cycle for reactor–grade plutonium, the power conversion system and the reactor geometry was proposed in order to solve these problems. The main elements of these proposals are: v 1. The use of 3 g reactor–grade plutonium fuel spheres should be the point of departure. 232Th will then be added in order to restore negative Uniform Temperature Reactivity Coefficients. 2. The introduction of neutron poisons into the reflectors, in order to suppress the power density peaks and thus the temperature peaks. 3. In order to counter the reduction in burn–up by this introduction of neutron poisons, a thinning of the central reflector was proposed. / Thesis (PhD (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2012.
5

Deep burn strategy for the optimized incineration of reactor waste plutonium in pebble bed high temperature gas–cooled reactors / Serfontein D.E.

Serfontein, Dawid Eduard. January 1900 (has links)
In this thesis advanced fuel cycles for the incineration, i.e. deep–burn, of weapons–grade plutonium, reactor–grade plutonium from pressurised light water reactors and reactor–grade plutonium + the associated Minor Actinides in the 400 MWth Pebble Bed Modular Reactor Demonstration Power Plant was simulated with the VSOP 99/05 diffusion code. These results were also compared to the standard 9 g/fuel sphere U/Pu 9.6% enriched uranium fuel cycle. The addition of the Minor Actinides to the reactor–grade plutonium caused an unacceptable decrease in the burn–up and thus an unacceptable increase in the heavy metal (HM) content in the spent fuel, which is intended for direct disposal in a deep geological repository, without chemical reprocessing. All the Pu fuel cycles failed the adopted safety limits in that either the maximum fuel temperature of 1130°C, during normal operation, or the maximum power of 4.5 kW/sphere was exceeded. All the Pu cycles also produced positive Uniform Temperature Reactivity Coefficients, i.e. the coefficient where the temperature of the fuel and the graphite moderator in the fuel spheres are varied together. these positive temperature coefficients were experienced at low temperatures, typically below 700°C. This was due to the influence of the thermal fission resonance of 241Pu. The safety performance of the weapons–grade plutonium was the worst. The safety performance of the reactor–grade plutonium also deteriorated when the heavy metal loading was reduced from 3 g/sphere to 2 g or 1 g. In view of these safety problems, these Pu fuel cycles were judged to be not licensable in the PBMR DPP–400 reactor. Therefore a redesign of the fuel cycle for reactor–grade plutonium, the power conversion system and the reactor geometry was proposed in order to solve these problems. The main elements of these proposals are: v 1. The use of 3 g reactor–grade plutonium fuel spheres should be the point of departure. 232Th will then be added in order to restore negative Uniform Temperature Reactivity Coefficients. 2. The introduction of neutron poisons into the reflectors, in order to suppress the power density peaks and thus the temperature peaks. 3. In order to counter the reduction in burn–up by this introduction of neutron poisons, a thinning of the central reflector was proposed. / Thesis (PhD (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2012.
6

Výpočet vyhořívání jaderného paliva reaktoru VVER 1000 pomoci programu KENO / Depletion calculation of VVER 1000 reactor fuel using KENO code

Janošek, Radek January 2016 (has links)
The introduction to operational nuclear reactors focusing on light-water pressurized reactor VVER 1000 is in the beginning of this Master´s thesis. This thesis covers basic technology of VVER 1000 reactor with focus on reactor core and nuclear fuel TVSA-T. A significant part of the thesis deal with basic concepts of nuclear safety and its methods. The main goal is to create a model of VVER 1000 reactor, which can be used in nuclear burn-up calculations using KENO code. Therefore a part of this thesis deals with explanation of statistical Monte Carlo method and the KENO code.

Page generated in 0.0252 seconds