Spelling suggestions: "subject:"burrowing"" "subject:"furrowing""
51 |
Effets combinés des facteurs naturels et anthropiques sur la diversité fonctionnellle des vasières à langoustines (Nephrops norvegicus) du golfe de Gascogne / Combined effects of natural and anthropogenic factors on the benthic invertebrate communities of Nephrops norvegicus mud flats of the Bay of BiscayRobert, Alexandre 31 May 2017 (has links)
Cette thèse participe à accroitre les connaissances sur les facteurs régissant la structures des communautés benthiques de la Grande Vasière (GV) du Golfe de Gascogne. Une attention particulière a été portée au rôle du chalutage de fond, dont l’intensité a été estimée à l’aide des données VMS. A l’échelle de la GV, nos résultats suggèrent que le chalutage de fond serait le principal moteur de structuration du mégabenthos (> 10 mm). Cependant, cette hypothèse n’a pu être formellement démontrée en raison de la co-variation entre l’activité de pêche et certaines caractéristiques environnementales. Par conséquent, les travaux ont été poursuivis sur une zone restreinte de la GV, choisie de manière à minimiser les variations dans l’habitat, tout en conservant un large gradient d’intensité de chalutageNous avons ainsi observé des modifications saisonnières et temporaires de la structure des communautés méga et macro-benthiques (>1 mm) en lien avec le chalutage. Ils proviendraient essentiellement d’une disponibilité alimentaire accrue pour les prédateurs-charognards de la mégafaune et de modifications des caractéristiques sédimentaires pour la macrofaune. En revanche, l’étude de la diversité fonctionnelle montre que ces changements n’ont que des répercussions mineures sur le fonctionnement de l’écosystème. Nos conclusions suggèrent que l’écosystème benthique de la GV a probablement été façonné par plusieurs décennies de pêche intensive et qu’il est actuellement adapté à des perturbations anthropiques chroniques / This PhD thesis aims at increasing the knowledge on factors influencing the benthic community structures of the « Grande Vasière » (GV) of the Bay of Biscay. Particular attention has been paid to the role of bottom trawling whose intensity has been estimated using VMS data. At the scale of the GV, our results suggest that bottom-trawling is the main driver of the megabenthic community structure (> 10mm). However, this hypothesis has not been formally demonstrated due to the co-variations between the trawling intensity and certain environmental characteristics. Hence, works continued on a restricted part of the GV that displayed minimal variations of environmental characteristics while exhibiting a wide gradient of trawling intensityResults suggest that bottom-trawling induces seasonnal and transient modifications on the mega and macrobenthic (> 1mm) communities. These changes could be due to an increase of food availability for the megabenthic predator-scavengers and to changes of sedimentary characteristics for macrofauna. However, investigation about functional diversity showed that these changes did not have major consequences on ecosystem functioning. We concluded that decades of bottom trawling may have shaped the benthic ecosystem of the GV and that it is currently adapted to frequent disruptions.
|
52 |
Building upon ichnological principles: modern biogenic structures, ichnotaxonomic classification, and paleoecological and stratigraphic significance of ichnofossil assemblagesDafoe, Lynn T. 11 1900 (has links)
Biogenic structures can impart important information regarding animal behaviors and depositional conditions at the time of colonization including: sedimentation rate, current velocities, distribution of food resources, oxygenation, salinity, and temperature. This thesis utilizes various ichnological subdisciplines to build upon these underlying ichnological principles.
Neoichnology is a newly emerging field that can provide invaluable information about modern and ancient organisms. Burrowing activities of a population of deposit-feeding, freshwater Limnodrilus and Tubifex is found to produce biogenic graded bedding. Similarly, the burrowing activities of Euzonus mucronata are studied in relation to the trace fossil Macaronichnus segregatis, which displays mineralogical segregation between the burrow infill and mantle. The process of grain partitioning was assessed using videographic analyses of ingested and excreted grains by these deposit-feeding polychaetes, which selectively ingest felsic grains through en-masse feeding in felsic-rich locales.
Macaronichnus is an important trace in ancient deposits of nearshore settings; however, since its inception, the genus had not been formally diagnosed. Accordingly, a unique approach to classification of these traces was undertaken, using grain sorting and collective morphology as ichnotaxobases, in addition to the diagnosis of a new, related genusHarenaparietis. In the Permian Snapper Point Formation of SE Australia, a new ichnospecies of Piscichnus was diagnosed and interpreted to reflect fish or cephalopod feeding via hydraulic jetting into the substrate in search of infaunal food sources.
The delineation of trace fossils through ichnotaxonomy provides a basis for identifying trace fossil suites, which can be interpreted through ichnofacies analysis. Subtle ichnological and sedimentological attributes of deltaic strata in the Viking Formation permits the identification of wave-influenced and mixed river- and wave-influenced deposits in the Hamilton Lake and Wayne-Rosedale-Chain areas of Alberta, Canada, respectively. Facies analysis combined with the identification of palimpsest stratigraphic surfaces led to the identification of transgressively incised shoreface deposits at Hamilton Lake. Examples of palimpsest ichnofossils from the Hamilton Lake area and from other strata are used in an assessment of soft-, stiff- and firmground suites. This study revealed the importance of substrate properties, environment, stratigraphy and processes leading to the formation and expression of allocyclic and autocyclic surfaces.
|
53 |
Building upon ichnological principles: modern biogenic structures, ichnotaxonomic classification, and paleoecological and stratigraphic significance of ichnofossil assemblagesDafoe, Lynn T. Unknown Date
No description available.
|
54 |
Environmental response to burrowing seabird colonies : a study in ecosystem engineeringBancroft, Wesley J. January 2004 (has links)
[Truncated abstract] Ecosystem engineers are organisms that physically modify habitat in a manner that modulate resource flows and species within ecosystems. Ecosystem engineering is distinct from classical interactions (competition, predation, parasitism and mutualism) in that it does not involve direct trophic exchange between organisms. The term ‘ecosystem engineer’ is a recently adopted one, and we are just beginning to investigate the occurrence and impact of engineers in ecosystems. My thesis explores the ecosystem engineering actions of Wedge-tailed Shearwaters, Puffinus pacificus, in a Mediterranean island, heathland ecosystem. I have approached this by (1) describing and quantifying the physical impact of these engineers, and (2) describing and quantifying the effects that these actions have on three major ecosystem components: the soil, the vascular plants, and the vertebrate fauna. Wedge-tailed Shearwaters are procellariid seabirds that excavate nesting burrows on offshore islands. The birds are colonial nesters, and on Rottnest Island, 17 km off the mainland coast of south-western Western Australia, their colonies have expanded considerably in recent decades. The expansion fits the trend observed in other tropicalorigin seabirds that breed in south-western Australia. In the last ten years, two new colonies have appeared (in a total of six) and the number of burrows on the island has almost doubled, to 11 745 ± 1320SE. In the same period the area occupied by the birds has increased by almost half ...
|
Page generated in 0.0511 seconds