• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Bus-based Communication Architectures for Systems with Throughput Constraints

Liao, Ren-Zheng 01 August 2005 (has links)
Modern system-on-chip consists of an increasing number of highly complex modules. The quality of the interfaces and throughput of communication connections between these components are crucial to the performance of the system, since communication is often the main bottleneck in modern application domains like multimedia. In this thesis, a bus-based communication architecture synthesis approach is proposed. Given the result of hardware/software partitioning and pipelined scheduling, the proposed approach constructs a communication topology which meets the constraints. We begin with the minimum number of AHB and an APB, each time we add an AHB and do some transformation such as merging or setting local buses. Our goal is to find the bus architecture which has minimum area. We use integer programming to construct a bus architecture each time, until the bus architecture with the minimum area are found. By this approach, we can save a lot of time required to design the communication architecture manually.
2

Automatic Generation of On-Chip Bus Infrastructure for System-on-Chip

Chen, Chun-Chang 15 December 2004 (has links)
For the on-chip bus, flexibility is the key to reuse by enabling developers to select the optimal architecture to efficiently meet the performance requirements of a wide variety of systems. AMBA is an open standard, on-chip bus specification that details a strategy for the interconnection and management of functional blocks that makes up a System-on-Chip (SoC). AMBA will let designers multiply the total bandwidth available in a system without changing the bus interface on existing intellectual property (IP) cores. Sometimes, the SoC designer to select the optimal combination of bus frequency (to match the peripherals) and number of channels (to achieve the bandwidth), using the AMBA Multi-layer architecture. The AHB of the AMBA System Bus connects embedded processors such as an ARM core to high-performance peripherals, DMA controllers, on-chip memory and interfaces. It is a high-speed, high-bandwidth bus that supports multi-master bus management to maximize system performance. In this thesis, we implement an software, Automatic Generation of On-Chip Bus Infrastructure for SoC, and it supports the AMBA AHB, Multi-layer AHB architecture to optimize system bandwidth, or AHB-Lite to streamline single master layers. By user set up, it can generate the relative on-chip bus infrastructure. We use each AHB Monitor of SDV and Synposys to validate the protocol of infrastructure respectively. In Test Patterns, we use Bus Functional Model to verify all type transfers of bus. In hardware implement, we use SYS32TM, SYS32TME, SYS16TM, and MEMCU to integrate three type AHBs. Every example, we also build FPGA prototyping and chip layout. We do this to validate our on-chip bus infrastructure.
3

The Development Environment of Embedded System based on AMBA Platform

Wang, Wei-Cheng 23 January 2003 (has links)
In this paper, we proposed a hardware development environment of the Embedded system to reduce the complexity of the Embedded system archeitecture, fit the varied specification, decrease the difficulties and time consuming on hardware integration, and short the life period of products. According to the On-Cihp Bus platform, we can utilize certain modules repeatly and recofigure the parameters flexibily to integrate the necessary system hardware and complete the system verification rapidly that we can achieve the time to market. In this thesis, we discuss architecture of hardware platform and the technique of system integration. Further more; we introduce the concept of VRM (Verification Reuse Methodology) on the system verification that reduces the verification time of system.
4

Ανάπτυξη cache controller βασισμένο στον δίαυλο AHB bus / Cache controller based on AHB bus

Γερακάρης, Δημήτρης 16 May 2014 (has links)
Η παρούσα διπλωματική αποτελεί την προσπάθεια κατασκευής ενός cache controller βασισμένο στον AHB BUS. Η ανάπτυξή του έγινε ως επί το πλείστο στο Εργαστήριο Vlsi του τμήματος Μηχανικών Υπολογιστών και Πληροφορικής με την προοπτική να ενσωματωθεί σε ένα ευρύτερο υπάρχων σύστημα βασισμένο στον open source cpu της arm Cortex M0. Δοκιμάστηκε επιτυχώς σε FPGA του εργαστηρίου αλλά ακόμα δεν έχει χρησιμοποιηθεί σε «πραγματικές συνθήκες». Απώτερος στόχος είναι να χρησιμοποιηθεί στο εργαστήριο για την επιτάχυνση εφαρμογών που θα χρειαστούν εξωτερική μνήμη δηλ. μεγαλύτερη μνήμη από την embedded του FPGA. Αν και δεν δοκιμάστηκε σε κάποιο άλλο σύστημα έχει φτιαχτεί με γνώμονα το πρότυπο του AHB οπότε υποθετικά δεν θα έχει κάποιο πρόβλημα να ενσωματωθεί σε οποιοδήποτε συμβατό με τον δίαυλο σύστημα. Η λογική πίσω από την υλοποίηση του είναι να είναι σχετικά εύκολη η αλλαγή ορισμένων μεταβλητών ώστε να διαφοροποιείται ο controller βάση των αναγκών του καθενός. Οι προδιαγραφές δίνονται παρακάτω αν και πιθανόν εκτός των πλαισίων της διπλωματικής και εντός του 2014 να επανα-σχεδιαστεί ώστε να γίνει πλήρως modular. / Cache controller compatible with AHB bus in system Verilog.
5

Digital System Synthesis with Complex Functional Units

Lin, Ta-Cheng 21 January 1999 (has links)
The transistor count for todays VLSI technology reaches 40 million transistors on one chip. In order to successfully design a system with such complexity, new computer-aided design (CAD) tools are needed. This dissertation shows approaches for coping with the problem of increasing complexity of VLSI design in three aspects: 1) capturing a higher level of abstraction, 2) using a new target architecture, and 3) using a new optimization technique. The advantage of working at a higher level of abstraction is that the number of objects that designers have to manipulate is reduced so that more complex systems can be delivered in shorter periods of time. The functions that can be used to capture higher levels of abstraction are surveyed and categorized into an is-a hierarchy. A partitioned-bus architecture that consists of complex functional units used to realize complex functions is proposed. The issues of synthesizing the complex functions to the partitioned-bus architecture are addressed. These issues are focused on the functional partitioning problem which is a known NP-complete problem. Algorithms used to optimize several metrics that affect the solution qualities of functional partitioning are presented. The metrics include communication buffer size, register file size, system delay, the number of buses, the number of links, and the number of multiplexers. These metrics are used to form a cost function, which is utilized by the Problem Space Genetic Partitioning algorithm (PSGP) to search for a good solution. Test cases with known optimal solutions are used to evaluate the solution qualities that PSGP can attain under run time and memory space constraints. The experimental results show that PSGP can reach an average about 87% of the optima for two-way partitioning. Another study also shows that PSGP outperforms the widely used Simulated Annealing algorithm. / Ph. D.
6

Digital Control Of Solar Photovoltaic Converters

Srinath, R 12 1900 (has links)
A photo-voltaic system consists of solar cells, power converters, battery and the load. The power converter interfaces the solar cells, battery and the load. The battery serves to equalise the energy demand (load) and the energy supply (solar cell). Currently the solar cells and the battery cost nearly 90% of the system cost. A typical photo-voltaic system can adopt various power bus configurations. Battery tied bus is the simplest of the power bus configurations. In this topology, the battery is always attached to the bus. This system is extremely simple in terms of power circuit configuration as well as control. Such systems weigh less and are more reliable. However, the battery tied bus suffers certain disadvantages. The first among them is the poor utilisation of solar panels. The load has to tolerate the full swing of the battery voltage variation. On account of the constraint on the solar panel voltage, the solar panels may not be loaded to the maximum power capacity. Such operating conditions lead to gross under-utilisation of the expensive solar panels. The battery tied bus configuration is designed, built and evaluated experimentally with 4 solar panels rated at 35 W each and a lead acid battery of 12 V 42 AH rating. This thesis explores alternate power architecture to overcome the above limitations. Load regulation and maximum power harvesting from the solar panels are the objectives. In the proposed configuration, a bidirectional power converter is inserted between the bus and the battery. The bidirectional power converter operates in boost mode and charges the battery when the sunlight is available. During eclipse period, it operates in buck mode and meets the load demand. The maximum power is extracted from the panels by controlling the voltage across the solar panels. The bus voltage reference is computed by MPPT block and the bus voltage is regulated to the reference voltage through closed loop control. So the maximum power is extracted from the panels at the expense of extra bidirectional power converter. Even though there is an additional power loss due to the introduction of power converter, this power bus configuration is superior because it increases the output power from the panel itself. The entire control logic implementation is done digitally using dspic30F6010A. The simulation is done by writing script files in C language. The proposed bus configuration is designed, built and evaluated experimentally with the same setup and the results are then compared.
7

Automated Bus Generation for Multi-processor SoC Design

Ryu, Kyeong Keol 12 July 2004 (has links)
In the design of a multi-processor System-on-a-Chip (SoC), the bus architecture typically comes to the forefront because the system performance is not dependent only on the speed of the Processing Elements (PEs) but also on the bus architecture in the system. An efficient bus architecture with effective arbitration for reducing contention on the bus plays an important role in maximizing performance. Therefore, among many issues of multi-processor SoC research, we focus on two issues related to the bus architecture in this dissertation. One issue is how to quickly and easily design an efficient bus architecture for an SoC. The second issue is how to quickly explore the design space across performance influencing factors to achieve a high performance bus system. The objective of this research is to provide a Computer-Aided Design (CAD) tool with which the user can quickly explore System-on-a-Chip (SoC) bus design space in search of a high performance SoC bus system. From a straightforward description of the numbers and types of Processing Elements (PEs), non-PEs, memories and buses (including, for example, the address and data bus widths of the buses and memories), our Bus Synthesis tool, called BusSynth, generates a Register-Transfer Level (RTL) Verilog Hardware Description Language (HDL) description of the specified bus system. The user can utilize this RTL Verilog in bus-accurate simulations to more quickly arrive at an efficient bus architecture for a multi-processor SoC. The methodology we propose gives designers a great benefit in fast design space exploration of bus systems across a variety of performance influencing factors such as bus types, PE types and software programming styles (e.g., pipelined parallel fashion or functional parallel fashion). We also show that BusSynth can efficiently generate bus systems in a matter of seconds as opposed to weeks of design effort to integrate together each system component by hand. Moreover, unlike the previous related work, BusSynth can support a wide variety of PEs, memory types and bus architectures (including a hybrid bus architecture) in search of a high performance SoC.
8

Measuring the Technical and Process Benefits of Test Automation based on Machine Learning in an Embedded Device / Undersökning av teknik- och processorienterade fördelar med testautomation baserad på maskininlärning i ett inbyggt system

Olsson, Jakob January 2018 (has links)
Learning-based testing is a testing paradigm that combines model-based testing with machine learning algorithms to automate the modeling of the SUT, test case generation, test case execution and verdict construction. A tool that implements LBT been developed at the CSC school at KTH called LBTest. LBTest utilizes machine learning algorithms with off-the-shelf equivalence- and model-checkers, and the modeling of user requirements by propositional linear temporal logic. In this study, it is be investigated whether LBT may be suitable for testing a micro bus architecture within an embedded telecommunication device. Furthermore ideas to further automate the testing process by designing a data model to automate user requirement generation are explored. / Inlärningsbaserad testning är en testningsparadigm som kombinerar model-baserad testning med maskininlärningsalgoritmer för att automatisera systemmodellering, testfallsgenering, exekvering av tester och utfallsbedömning. Ett verktyg som är byggt på LBT är LBTest, utvecklat på CSC skolan på KTH. LBTest nyttjar maskininlärningsalgoritmer med färdiga ekvivalent- och model-checkers, och modellerar användarkrav med linjär temporal logik. I denna studie undersöks det om det är lämpat att använda LBT för att testa en mikrobus arkitektur inom inbyggda telekommunikationsenheter. Utöver det undersöks även hur testprocessen skulle kunna ytterligare automatiseras med hjälp av en data modell för att automatisera generering av användarkrav.
9

A High Performance Advanced Encryption Standard (AES) Encrypted On-Chip Bus Architecture for Internet-of-Things (IoT) System-on-Chips (SoC)

Yang, Xiaokun 25 March 2016 (has links)
With industry expectations of billions of Internet-connected things, commonly referred to as the IoT, we see a growing demand for high-performance on-chip bus architectures with the following attributes: small scale, low energy, high security, and highly configurable structures for integration, verification, and performance estimation. Our research thus mainly focuses on addressing these key problems and finding the balance among all these requirements that often work against each other. First of all, we proposed a low-cost and low-power System-on-Chips (SoCs) architecture (IBUS) that can frame data transfers differently. The IBUS protocol provides two novel transfer modes – the block and state modes, and is also backward compatible with the conventional linear mode. In order to evaluate the bus performance automatically and accurately, we also proposed an evaluation methodology based on the standard circuit design flow. Experimental results show that the IBUS based design uses the least hardware resource and reduces energy consumption to a half of an AMBA Advanced High-Performance Bus (AHB) and Advanced eXensible Interface (AXI). Additionally, the valid bandwidth of the IBUS based design is 2.3 and 1.6 times, respectively, compared with the AHB and AXI based implementations. As IoT advances, privacy and security issues become top tier concerns in addition to the high performance requirement of embedded chips. To leverage limited resources for tiny size chips and overhead cost for complex security mechanisms, we further proposed an advanced IBUS architecture to provide a structural support for the block-based AES algorithm. Our results show that the IBUS based AES-encrypted design costs less in terms of hardware resource and dynamic energy (60.2%), and achieves higher throughput (x1.6) compared with AXI. Effectively dealing with the automation in design and verification for mixed-signal integrated circuits is a critical problem, particularly when the bus architecture is new. Therefore, we further proposed a configurable and synthesizable IBUS design methodology. The flexible structure, together with bus wrappers, direct memory access (DMA), AES engine, memory controller, several mixed-signal verification intellectual properties (VIPs), and bus performance models (BPMs), forms the basic for integrated circuit design, allowing engineers to integrate application-specific modules and other peripherals to create complex SoCs.

Page generated in 0.0493 seconds