• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Técnicas de buscas heurísticas para otimização de parâmetros de máquinas de vetores suportes

SOUZA, Francisco Carlos Monteiro 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T16:00:01Z (GMT). No. of bitstreams: 2 arquivo5815_1.pdf: 5568534 bytes, checksum: c4f94d52da70aa2e4b63d53050048c4a (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2011 / Faculdade de Amparo à Ciência e Tecnologia do Estado de Pernambuco / Máquinas de Vetores Suporte (SVM) é uma poderosa técnica de Aprendizagem de Máquina (AM) fundamentada na teoria do aprendizado estatístico utilizada para problemas de classificação, reconhecimento de padrões, dentre outros. Em função de seu forte embasamento teórico e sua excelente capacidade de generalização, considerada superior diante de muitos algoritmos de aprendizagem, SVM tem atraído o interesse da comunidade de Aprendizagem de Máquina. Nesse contexto, apesar de possuir uma performance eficaz para maioria dos problemas de classificação e regressão, SVM é sensível a seleção adequada dos parâmetros, permitindo a aplicação de muitas estratégias para seleção e otimização do processo para esse tipo de problema, sendo normalmente realizado empiricamente ou através de experimentos por tentativa e erro. No entanto, existe um número significativo de combinações de parâmetros que podem ser utilizados, de forma que a utilização de um processo exaustivo como este se torna inviável, o qual é tratado como um problema de busca. Neste trabalho foi proposto um sistema híbrido para otimização da seleção do parâmetro de regularização do SVM e o parâmetro (gamma) do Kernel RBF utilizando os algoritmos de busca meta-heurísticas Subida da Encosta e Otimização por Enxame de Partículas. O processo de busca foi aplicado em uma grade de busca composta por 38 problemas de benchmark, contendo o valor de desempenho da combinação de 399 parâmetros distintos executados no SVM. As principais contribuições deste trabalho são os resultados da investigação dos algoritmos para o problema de seleção de parâmetros do SVM, comparando-o com a busca aleatória, bem como a realização de experimentos com versões otimizadas dos algoritmos, obtendo resultados mais satisfatórios. Por fim, este trabalho contribui também com a constatação da viabilidade dos algoritmos para o problema com um número fixo de iterações a fim de reduzir o número de execução de muitos parâmetros no SVM
2

Uma heurística para a programação da produção de sistemas flexíveis de manufatura usando modelagem em redes de Petri.

Maggio, Eduardo Gomes Ribeiro 30 May 2005 (has links)
Made available in DSpace on 2016-06-02T19:05:23Z (GMT). No. of bitstreams: 1 DissEGRM.pdf: 5921557 bytes, checksum: 89005165cd9d839d8283e0713abe1fb8 (MD5) Previous issue date: 2005-05-30 / Financiadora de Estudos e Projetos / The Petri Net based Search has been shown as a promising way to solve Flexible manufacturing Systems (FMS) Scheduling Problem. However, the response time is critical since it s a system with high computational complexity. Focusing the reduction of response time, this work proposes a heuristic for Petri Net based Search to solve FMS Scheduling problem of makespan minimization. Experiments showed improvements on response time reduction comparing with prior works / Abordagens de Busca baseadas em Rede de Petri (PN) têm sido mostradas como uma forma promissora de resolver o problema da Programação da Produção de Sistemas Flexíveis de Manufatura (FMS). Entretanto, o tempo de resposta é crítico, uma vez que se trata de um sistema de alta complexidade computacional. Focando a redução do tempo de resposta do sistema, este trabalho propõe uma heurística para busca baseada em Rede de Petri para resolver o problema de programação de FMS na minimização do makespan. Experimentos mostraram um avanço na melhoria do tempo de resposta em relação a trabalhos anteriores
3

Técnicas computacionais inteligentes para a inferência de estado e a otimização de cultivos de Streptococcus pneumoniae

Horta, Antonio Carlos Luperni 27 March 2008 (has links)
Made available in DSpace on 2016-08-17T18:39:30Z (GMT). No. of bitstreams: 1 2145.pdf: 2206472 bytes, checksum: 5295597725f34bdf5560d6cda8af7446 (MD5) Previous issue date: 2008-03-27 / Financiadora de Estudos e Projetos / Streptococcus pneumoniae (pneumococo) is a pathogenic bacterium that causes several infections which are aggravated by the increase of serotypes with antibiotics resistance. The development of an effective vaccine against this pathogen is crucial for the prevention of the neumococcal illnesses. Conjugated vaccines, consisting of the capsular polysaccharide joined to a carrier protein, are more efficient in the stimulation of the immunologic memory. The capsular polysaccharide (PS) is present in the capsule that involves the cell. Thus, the conjugated vaccine elaboration involves bacterial cells cultivation for its production. As the organism is cultivated in the oxygen absence, the lactate production is inevitably high, leading to growth inhibition due to lactate accumulation in the medium. To minimize the inhibitory effects of the lactate accumulation and to increase the PS production it is necessary to monitor the process and adequately control the addition of supplementary medium along with the withdrawal of saturated medium. This kind of operation can be performed by carrying out a fed-bath cultivation in a bioreactor connected to a perfusion system. The success on the monitoring, control and optimization of this bioprocess depends on the efficiency of the modeling and simulation resources employed. This research work considers the uses intelligent computational techniques, specifically the technique of heuristical search called simulated annealing (SA) combined with neural networks for the state inference and the optimization of S. pneumoniae cultivations. The proposal was implemented as a computational system that: a) uses the SA for the identification of the values for a set of parameters associated to unstructured models and; b) uses neural networks (individually and grouped as a committee) for the state inference of a culture. The work presents and discusses the results of the system for data sets experimentally obtained and highlights the importance of the proposal for achieving a higher efficiency in the culture control processes. / Streptococcus pneumoniae (pneumococo) é uma bactéria patogênica causadora de várias infecções que são agravadas pelo aumento de cepas com resistência aos antibióticos. O desenvolvimento de uma vacina efetiva contra este patógeno é crucial para a prevenção das doenças pneumocócicas. Vacinas conjugadas, constituídas pelo polissacarídeo capsular ligado a uma proteína carregadora, são mais eficientes no estímulo da memória imunológica. O polissacarídeo capsular (PS) está presente na cápsula que envolve a célula e, desta forma, a elaboração de vacinas conjugadas envolve o cultivo da bactéria para a produção do mesmo. Como o microrganismo é cultivado na ausência de oxigênio, a produção de lactato é inevitavelmente elevada e o seu acúmulo no meio provoca a inibição do crescimento. Para minimizar os efeitos inibitórios da acumulação de lactato e aumentar a produção de PS é necessário monitorar o processo e controlar adequadamente a adição de meio suplementar e a retirada de meio saturado em cultivos operados em batelada alimentada, utilizando biorreatores acoplados a sistema de perfusão. O sucesso no monitoramento, no controle e na otimização deste bioprocesso depende da utilização de recursos de modelagem e de simulação que sejam eficientes. Este trabalho de pesquisa propõe o uso de técnicas computacionais inteligentes, especificamente a técnica de busca heurística chamada de simulated annealing (SA) aliada a redes neurais, para a inferência de estado e a otimização de cultivos de S. pneumoniae. A proposta foi concretizada via desenvolvimento de um sistema computacional que: a) faz uso do SA para a identificação do conjunto de valores de parâmetros associados a modelos não estruturados e; b) usa redes neurais (individualmente e em regime de comitê) para a inferência de estado de um cultivo. O trabalho apresenta e discute os resultados do sistema em conjuntos de dados obtidos experimentalmente e evidencia a importância da proposta para uma maior eficiência no controle de processos de cultivo.

Page generated in 0.0773 seconds