11 |
Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel. / Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel.Marcela Irene Merklen Olivera 16 September 2002 (has links)
Trabalhamos com funções definidas em Rn que tomam valores numa C*-álgebra A. Consideramos o conjunto SA (Rn) das funções de Schwartz, (de decrescimento rápido), com norma dada por ||f||2 = ||?f(x)*f(x)dx||½. Denotamos por CB?(R2n,A) o conjunto das funções C? com todas as suas derivadas limitadas. Provamos que os operadores pseudo-diferenciais com símbolo em CB?(R2n,A) são contínuos em SA(Rn) com a norma || ? ||2, fazendo uma generalização de [10]. Rieffel prova em [1] que CB?(Rn,A) age em SA(Rn) por meio de um produto deformado, induzido por uma matriz anti-simétrica, J, como segue: LFg(x)=F×Jg(x) = ?e2?iuvF(x+Ju)g(x+v)dudv, (integral oscilatória). Dizemos que um operador S é Heisenberg-suave se as aplicações z |-> T-zSTz e ? |-> M-?SM?, z,? E Rn, são C? onde Tzg(x)=g(x-z) e M?g(x)=ei?xg(x). No final do capítulo 4 de [1], Rieffel propõe uma conjectura: que todos os operadores \"adjuntáveis\" em SA(Rn), Heisenberg-suaves, que comutam com a representação regular à direita de CB?(Rn,A), RGf = f×JG, são os operadores do tipo LF. Provamos este resultado para o caso A=|C, ver [14], usando a caracterização de Cordes (ver [17]) dos operadores Heisenberg-suaves em L2(Rn) como sendo os operadores pseudo-diferenciais com símbolo em CB?(R2n). Também é provado neste trabalho que, se vale uma generalização natural da caracterização de Cordes, a conjectura de Rieffel é verdadeira. / We work with functions defined on Rn with values in a C*-algebra A. We consider the set SA(Rn) of Schwartz functions (rapidly decreasing), with norm given by ||f||2 = ||?f(x)*f(x)dx||½ . We denote CB?(R2n,A) the set of functions which are C? and have all their derivatives bounded. We prove that pseudo-differential operators with symbol in CB?(R2n,A) are continuous on SA(Rn) with the norm || · ||2, thus generalizing the result in [10]. Rieffel proves in [1] that CB?(Rn,A) acts on SA(Rn) through a deformed product induced by an anti-symmetric matrix, J, as follows: LFg(x)=F×Jg(x) = ?e2?iuvF(x+Ju)g(x+v)dudv (an oscillatory integral). We say that an operator S is Heisenberg-smooth if the maps z |-> T-zSTz and ? |-> M-?SM?, z,? E Rn are C?; where Tzg(x)=g(x-z) and where M?g(x)=ei?xg(x). At the end of chapter 4 of [1], Rieffel proposes a conjecture: that all adjointable operators in SA(Rn) that are Heisenberg-smooth and that commute with the right-regular representation of CB?(Rn,A), RGf = f×JG, are operators of type LF . We proved this result for the case A = |C in [14], using Cordes\' characterization of Heisenberg-smooth operators on L2(Rn) as being the pseudo-differential operators with symbol in CB?(R2n). It is also proved in this thesis that, if a natural generalization of Cordes\' characterization is valid, then the Rieffel conjecture is true.
|
12 |
Wavelets and C*-algebrasWood, Peter John, drwoood@gmail.com January 2003 (has links)
A wavelet is a function which is used to construct a specific type of orthonormal basis.
We are interested in using C*-algebras and Hilbert C*-modules to study wavelets. A Hilbert C*-module is a generalisation of a Hilbert space for which the inner product takes its values in a C*-algebra instead of the complex numbers. We study wavelets in an arbitrary Hilbert space and construct some Hilbert C*-modules over a group C*-algebra which will be used to study the properties of wavelets.
We study wavelets by constructing Hilbert C*-modules over C*-algebras generated by groups of translations. We shall examine how this construction works in both the Fourier and non-Fourier domains. We also make use of Hilbert C*-modules over the space of essentially bounded functions on tori. We shall use the Hilbert C*-modules mentioned above to study wavelet and scaling filters, the fast wavelet transform, and the cascade algorithm. We shall furthermore use Hilbert C*-modules over matrix C*-algebras to study multiwavelets.
|
13 |
Host AlgebrasHendrik Grundling, hendrik@maths.unsw.edu.au 20 June 2000 (has links)
No description available.
|
14 |
Dimension Groups and C*-algebras Associated to Multidimensional Continued FractionsMaloney, Gregory 13 April 2010 (has links)
Thirty years ago, Effros and Shen classified the simple dimension groups with rank two. Every such group is parametrized by an irrational number, and can be constructed as an inductive limit using that number's continued fraction expansion.
There is a natural generalization of continued fractions to higher dimensions, and this invites the following question: What dimension groups correspond to multidimensional continued fractions? We describe this class of groups and show how some properties of a continued fraction are reflected in the structure of its dimension group.
We also consider a related issue: an Effros-Shen group has been shown to arise in a natural way from the tail equivalence relation on a certain sequence space. We describe a more general class of sequence spaces to which this construction can be applied to obtain other dimension groups, including dimension groups corresponding to multidimensional continued fractions.
|
15 |
C*-algebras constructed from factor groupoids and their analysis through relative K-theory and excisionHaslehurst, Mitch 30 August 2022 (has links)
We address the problem of finding groupoid models for C*-algebras given some prescribed K-theory data. This is a reasonable question because a groupoid model for a C*-algebra reveals much about the structure of the algebra. A great deal of progress towards solving this problem has been made using constructions with inductive limits, subgroupoids, and dynamical systems. This dissertation approaches the question with a more specific methodology in mind, with factor groupoids.
In the first part, we develop a portrait of relative K-theory for C*-algebras using the general framework of Banach categories and Banach functors due to Max Karoubi. The purpose of developing such a portrait is to provide a means of analyzing the K-theory of an inclusion of C*-algebras, or more generally of a *-homomorphism between two C*-algebras. Another portrait may be obtained using a mapping cone construction and standard techniques (it is shown that the two presentations are naturally and functorially isomorphic), but for many examples, including the ones considered in the second part, the portrait obtained by Karoubi's construction is more convenient.
In the second part, we construct examples of factor groupoids and analyze their C*-algebras. A factor groupoid setup (two groupoids with a surjective groupoid homomorphism between them) induces an inclusion of two C*-algebras, and therefore the portrait of relative K-theory developed in the first part, together with an excision theorem, can be used to elucidate the structure. The factor groupoids are obtained as quotients of AF-groupoids and certain extensions of Cantor minimal systems using iterated function systems. We describe the K-theory in both cases, and in the first case we show that the K-theory of the resulting C*-algebras can be prescribed through the factor groupoids. / Graduate
|
16 |
O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger / The crossed-product of a C*-algebra by an endomorphism and the Cuntz-Krieger algebraIastremski, Priscilla 18 March 2011 (has links)
Dados A uma C*-álgebra com unidade e \\alpha um *-endomorfismo de A, um operador transferência para o par (A, \\alpha) é uma aplicação linear contínua positiva L: A --> A tal que L(\\alpha(a)b) = a L(b), para todo a, b \\in A. Nestas condições, denotamos por T(A, \\alpha, L) a C*-álgebra universal com unidade gerada por A e um elemento S sujeito às relações Sa = \\alpha(a)S e S*aS = L(a). Uma redundância é definida como o par (a, k) \\in A x \\overline{ASS* A} tal que abS = akS, para todo b \\in A. Neste trabalho definimos a C*-álgebra chamada de produto cruzado como o quociente de T(A, \\alpha, L) pelo ideal bilateral fechado I gerado pelo conjunto das diferenças a-k, para todas as redundâncias (a, k) tais que a \\in \\overline, onde R denota a Im \\alpha. Mostramos que quando \\alpha é injetor com imagem hereditária, então o produto cruzado é isomorfo à C*-álgebra universal com unidade, denotada por U(A, \\alpha), gerada por A e uma isometria T sujeita à relação \\alpha(a) = TaT*, para todo a \\in A. Também mostramos que a álgebra de Cuntz-Krieger O_A pode ser caracterizada como o produto cruzado definido neste trabalho. / Given A a C*-algebra with unit and \\alpha an *-endomorphism of A, a transfer operator for the pair (A, \\alpha) is a continuous positive linear map L: A --> A such that L(\\alpha(a)b) = a L(b), for all a, b \\in A. Under these conditions , we denote by T(A, \\alpha, L) the universal C*-algebra with unit generated by A and an element S subject to the relations Sa = \\alpha(a)S and S*aS = L(a). A redundancy is defined as a pair (a, k) \\in A x \\overline{ASS* A} such that abS = akS, for all b \\in A. In tjis work we define the C*-algebra called crossed-product as the quotient of T(A, \\alpha, L) by the closed two-sided ideal I generated by the set of all differences a-k, for all redundancies (a, k) such that a \\in \\overline, where by R we mean Im \\alpha. We prove that when \\alpha is injective with an hereditary range, then the crossed-product is isomorphic to the universal C*-algebra with unit, which we denote by U(A, \\alpha), generated by A and an isometry T subject to the relation \\alpha(a) = TaT*, for all a \\in A. We also prove that the Cuntz-Krieger algebra O_A can be characterized as the crossed-product we define in this work.
|
17 |
A Mayer-Vietoris Spectral Sequence for C*-Algebras and Coarse GeometryNaarmann, Simon 10 September 2018 (has links)
No description available.
|
18 |
O caráter de Chern-Connes calculado em 0 cl (S 1 ) e 0 cl (S 2 ) / The Chern-Connes character calculate in 0 cl (S 1 ) and 0 cl (S 2 )Sá, Lucas Santos de 23 April 2019 (has links)
Este trabalho busca explorar a definição dada por Connes em [Con01] do caráter de Chern para a geometria não-comutativa. Construímos os funtores K 0 e K 1 com os principais resultados para demonstrarmos a Sequência Exata de Seis Termos e a Sequência de Mayer-Vietoris. Calculamos os grupos de K-teoria de algumas álgebras de operadores pseudo-diferenciais clássicos de ordem zero. Posteriormente usamos as sequências exatas para calcular explicitamente o caráter de Chern-Connes nos C -sistemas dinâmicos. / This work intends to explore the definition given by Connes in [Con01] of the Chern charac- ter for noncommutative geometry. We construct the functors K 0 and K 1 with the main results to demonstrate the Exact Sequence of Six Terms and the Sequence of Mayer Vietoris. We compute the K-groups of some algebras of classical zero-order pseudo-differential operators. We then use the exact sequences to explicitly calculate the Chern-Connes Character of C -dynamic systems.
|
19 |
C*-quantum groups with projectionRoy, Sutanu 26 September 2013 (has links)
No description available.
|
20 |
Ring structures on the K-theory of C*-algebras associated to Smale spacesKillough, D. Brady 24 August 2009 (has links)
We study the hyperbolic dynamical systems known as Smale spaces. More specifically
we investigate the C*-algebras constructed from these systems. The K group
of one of these algebras has a natural ring structure arising from an asymptotically
abelian property. The K groups of the other algebras are then modules over this
ring. In the case of a shift of finite type we compute these structures explicitly and
show that the stable and unstable algebras exhibit a certain type of duality as modules.
We also investigate the Bowen measure and its stable and unstable components
with respect to resolving factor maps, and prove several results about the traces that
arise as integration against these measures. Specifically we show that the trace is
a ring/module homomorphism into R and prove a result relating these integration
traces to an asymptotic of the usual trace of an operator on a Hilbert space.
|
Page generated in 0.1624 seconds