• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 40
  • 8
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 109
  • 109
  • 28
  • 15
  • 14
  • 14
  • 14
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Etats, idéaux et axiomes de choix / States, ideals and axioms of choice

Barret, Martine 28 September 2017 (has links)
On travaille dans ZF, théorie des ensembles sans Axiome du Choix. En considérant des formes plus faibles de l'Axiome du choix, comme l'axiome de Hahn-Banach HB : "Toute forme linéaire sur un sous-espace vectoriel d'un espace vectoriel E, majorée par une forme sous-linéaire p se prolonge en une forme linéaire sur E majorée par p'', ou encore l'axiome de Tychonov T2 : "Un produit de compacts séparés est compact'', on étudie l'existence d'états dans les groupes ordonnés avec unité d'ordre. On poursuit l'étude en établissant des liens entre idéaux à gauche et états sur les C*-algèbres. / We work in ZF, set theory without Axiom of Choice. Using weak forms of Axiom of Choice, for example Hahn-Banach axiom HB : "Every linear form on a vector subspaceof a vector space E, increased by a sublinear form p can be extended to a linear form on E increased by p", or Tychonov axiom T2 : "Every product of compact Haussdorf is compact, we study the existence of states on ordered groups with order unit. We continue giving links between left ideals and states on C*-algebras.
82

Estados coerentes e seus usos em teorias de campos em espaços curvos / Coherent states and its uses in field theories on curved spacetimes.

Renê Soares Freire 07 August 2015 (has links)
A questão de como sistemas quânticos correspondem a sistemas clássicos existe desde o surgimento da mecânica quântica e parece ser algo natural de se perguntar. E também desde o principio da mecânica quântica estados coerentes são usados para responder esse tipo de questão, já que eles são, em certo sentido, os estados quânticos mais próximos a estados que descrevem sistemas clássicos. Seguindo os resultados de Hepp, que mostrou a correspondência tantopara o caso da mecânica quântica não relativística quanto para o caso de camposBosônicos relativísticos, mostramos a correspondência entre sistemas Bosônicos livres em um espaço-tempo de de Sitter e soluções da equação de Klein-Gordon neste mesmo espaço.Após introduzir os conceitos relevantes e construir a álgebra que descreve sistemas Bosônicos livres em um espaço globalmente hiperbólico, construímos estados coerentes para álgebras CCR na forma de Weyl e provamos o limite semi-clássico para uma região próxima à origem (ou, para um tempo fixo, em todo espaço de de Sitter). Além disso provamos que este limite independe do estado de vácuo---que, em geral, não é único. / The question of the correspondence between quantum and classical systems is an issue since the beginnings of quantum mechanics and it seems like a natural question. Also since the start of quantum mechanics coherent states were used to answer this sort of question, since they are, in a sense, the quantum states closest to states that describe classical systems. Following the results of Hepp, who showed the correspondence for the case of non-relativistic quantum mechanics as well as for relativistic Bosonic fields, we show the correspondence between free Bosonic field in a de Sitter space-time and the solutions of the Klein-Gordon equation in that same space-time. After introducing the relevant concepts and the construction of the algebra that describes free Bosonic systems in a globally hyperbolic space-time, we construct coherent states for CCR algebras in Weyls form, and we prove the semi-classical limit for a region close to the origin (or, for a fixed time, in the whole de Sitter space-time). We also prove that this limit is independent of the vacuum statewhich might not be unique.
83

Aplicações completamente positivas em algebras de matrizes e o teorema de Birkhoff

Demeneghi, Paulinho January 2014 (has links)
Descrevemos propriedades espectrais de aplicações positivas em C*- álgebras de dimensão finita, seguindo o trabalho clássico de Evans e Hoegh-Krohn [EH-K]. Conjuntamente, estudamos os pontos extremais do conjunto das aplicações duplamente estocásticas completamente positivas sobre Mn(C), seguindo Landau e Streater [LS]. / We describe spectral properties of positive maps over nite dimensional C* -algebras, following the classical work of Evans and H egh-Krohn [EH-K]. We also study the extremal points of the set of completely positive doubly-stochastic maps over Mn(C), following Landau and Streater [LS].
84

Topics Related to Tensorially Absorbing Inclusions and Algebraic K-Theory of C*-Algebras

Sarkowicz, Pawel 25 September 2023 (has links)
This thesis is split up into two parts: the first concerns certain applications of the de la Harpe-Skandalis determinant to K-theory of appropriately regular C*-algebras. The second is concerned with (unital) inclusions of C*-algebras which satisfy a strong tensorial absorption condition. The first chapter following the preliminary section is joint work with Aaron Tikuisis [ST23], while the following chapters are independent. The penultimate chapter is [Sar23b] and the last chapter is essentially [Sar23a]. In the first chapter following the preliminaries, we examine the interplay between the algebraic K₁-group and the unitary algebraic K₁-group of a unital C*-algebra. We prove that for an abundance of unital C*-algebras, the algebraic K₁-group splits naturally as a direct sum of the unitary algebraic K₁-group and the space of continuous real-valued affine functions on the trace simplex. We further prove that if one considers Hausdorffized variants, then for any unital C*-algebra, there is a natural splitting of the Hausdorffized algebraic K₁-group in terms of the Hausdorffized unitary algebraic K₁-group and the space of continuous real-valued affine functions on the trace simplex. Moreover, this a splitting of topological groups. The following chapter studies how certain group homomorphisms between unitary groups of C*-algebras induce maps on the trace simplex. In particular, we show that a contractive group homomorphism between unital C*-algebras which sends the circle to the circle, induces a map between their trace simplices. Under mild regularity conditions these further induce maps between Elliott invariants. As a consequence we show that certain inclusions of C*-algebras are in a correspondence with certain inclusions of unitary groups. Finally we investigate what we call "D-stable inclusions" of C*-algebras, where D is strongly self-absorbing. We give a systematic study and prove that such inclusions between unital, separable, D-stable C*-algebras exist, are abundant, and are non-trivial.
85

Groupoid C*-algebras, conformal measures and phase transitions / C*-álgebras de grupóides, medidas conformes e transições de fase

Frausino, Rodrigo Souza 06 July 2018 (has links)
The objective of this work is the study of phase transitions on the context of Groupoids and their C*-Algebras. The main result of this dissertation is due to Klaus Thomsen in [Tho17], which investigates the connection between conformal measures in the classical formalism and KMS-states in the quantum formalism. The phase transition in the quantum setting is a consequence of this connection between both formalisms and the fact that on the classical setting it was known examples of continuous potentials that show the phenomena of phase transition. The potential used was introduced by Hofbauer [Hof77], an example that shows, dierently from potential of summable variations, potentials only continuous can exhibit phase transition. / O objetivo deste trabalho é o estudo do fenômeno de transição de fase no contexto de Grupóides e suas C*-álgebras. O resultado principal é devido a Klaus Thomsen em [Tho17], que explora a conexão entre medidas conformes no formalismo clássico e estados KMS do contexto quântico. A transição de fase no caso quântico é consequência desta ligação entre os dois formalismos e do fato de que no setting clássico eram conhecidos exemplos de potenciais contínuos que apresentam o fenômeno de transição de fase. O potencial utilizado é aquele introduzido por Hofbauer [Hof77], um exemplo que mostra que, diferentemente de potenciais de variação somável, potenciais apenas contínuos podem apresentar transição de fase.
86

K-Teoria e aplicações para cálculos pseudodiferenciais globais e seus problemas de fronteira / K-Theory and applications for global pseudodifferential calculus and its boundary problems.

Lopes, Pedro Tavares Paes 17 August 2012 (has links)
Nesta tese vamos apresentar dois resultados a respeito de K-teoria de álgebras C^{*} de classes de operadores pseudodiferenciais que são globalmente definidos em \\mathbb^. O primeiro resultado é a prova da regularidade da função \\eta para operadores clássicos com símbolos de Shubin. Vamos mostrar que a álgebra de operadores pseudodiferenciais em \\mathbb^ com símbolos de Shubin permite a construção de potências complexas e um tipo de traço de Kontsevich-Vishik numa forma muito similar àquela feita para variedades compactas, com definições até mais simples. Mostraremos, então, que podemos definir as funções \\zeta e \\eta também para esses símbolos. Finalmente mostraremos como o conhecimento de fatos simples sobre a sua K-teoria permitem a prova da regularidade da função \\eta. Para variedades compactas, esse resultado tem muitas implicações. Acreditamos assim que ele também possa ser interessante para os estudos de operadores globais em \\mathbb^. O segundo resultado é o cálculo da K-teoria de operadores limitados gerados por operadores de Boutet de Monvel SG de ordem (0,0) e tipo zero em \\mathbb_{+}^. Boutet de Monvel introduziu a álgebra que leva o seu nome para estudar o índice de operadores elípticos de fronteira em variedades compactas com bordo. Mais recentemente uma nova abordagem foi proposta por Melo, Nest, Schrohe e Schick para obter resultados sobre o índice de Fredholm usando a K-teoria de álgebras C^{*}, uma ferramenta que não era disponível ainda quando Boutet de Monvel desenvolveu sua álgebra. Nossa ideia foi, então, mostrar como calcular a K-teoria de álgebras de Boutet de Monvel com símbolos SG em \\mathbb_{+}^, em que os símbolos SG são uma classe de símbolos globalmente definidos em \\mathbb^. Acreditamos que isso possa ser útil também ao estudo de problemas elípticos de fronteira para operadores de Boutet de Monvel com símbolos SG em certas classes de variedades não compactas. / We are going to present two results concerning K-theory of C^{*} algebras of classes of pseudodifferential operators that are globally defined in \\mathbb^. The first result is the proof of the regularity of the \\eta function for classical operators with Shubin symbols. We are going to show that the algebra of classical pseudodifferential operators in \\mathbb^ with Shubin symbols allows the construction of complex powers and a kind of Kontsevich-Vishik trace in a very similar way as on compact manifolds, with even easier definitions. Then we show that we can define the \\zeta and \\eta functions also for these symbols. Finally we will show how the knowledge of simple facts about the K-theory of pseudodifferential operators with Shubin\'s symbols allows the proof of the regularity of the \\eta function at 0. For compact manifolds, this regularity is a result that has many implications. Therefore it may also be interesting for global operators in \\mathbb^. The second result is the evaluation of the K-theory of bounded operators generated by SG Boutet de Monvel operators of order (0,0) and type 0 in \\mathbb_^. Boutet de Monvel introduced his algebra to study the index of elliptic boundary value problems on compact manifolds. More recently a new approach was proposed by Melo, Nest, Schrohe and Schick to obtain results about the index of Fredholm operators using the K-theory of C^ algebras, a tool which was not well known when Boutet de Monvel published his work. The idea here is to show how one can evaluate the K-theory of the Boutet de Monvel operators with SG symbols in \\mathbb_^, where SG symbols is a class of symbols globally defined in \\mathbb^. We believe that this can be useful to the study of index of Fredholm problems also in the case of Boutet de Monvel operators with SG symbols in some classes of non-compact manifolds.
87

K-Teoria e aplicações para cálculos pseudodiferenciais globais e seus problemas de fronteira / K-Theory and applications for global pseudodifferential calculus and its boundary problems.

Pedro Tavares Paes Lopes 17 August 2012 (has links)
Nesta tese vamos apresentar dois resultados a respeito de K-teoria de álgebras C^{*} de classes de operadores pseudodiferenciais que são globalmente definidos em \\mathbb^. O primeiro resultado é a prova da regularidade da função \\eta para operadores clássicos com símbolos de Shubin. Vamos mostrar que a álgebra de operadores pseudodiferenciais em \\mathbb^ com símbolos de Shubin permite a construção de potências complexas e um tipo de traço de Kontsevich-Vishik numa forma muito similar àquela feita para variedades compactas, com definições até mais simples. Mostraremos, então, que podemos definir as funções \\zeta e \\eta também para esses símbolos. Finalmente mostraremos como o conhecimento de fatos simples sobre a sua K-teoria permitem a prova da regularidade da função \\eta. Para variedades compactas, esse resultado tem muitas implicações. Acreditamos assim que ele também possa ser interessante para os estudos de operadores globais em \\mathbb^. O segundo resultado é o cálculo da K-teoria de operadores limitados gerados por operadores de Boutet de Monvel SG de ordem (0,0) e tipo zero em \\mathbb_{+}^. Boutet de Monvel introduziu a álgebra que leva o seu nome para estudar o índice de operadores elípticos de fronteira em variedades compactas com bordo. Mais recentemente uma nova abordagem foi proposta por Melo, Nest, Schrohe e Schick para obter resultados sobre o índice de Fredholm usando a K-teoria de álgebras C^{*}, uma ferramenta que não era disponível ainda quando Boutet de Monvel desenvolveu sua álgebra. Nossa ideia foi, então, mostrar como calcular a K-teoria de álgebras de Boutet de Monvel com símbolos SG em \\mathbb_{+}^, em que os símbolos SG são uma classe de símbolos globalmente definidos em \\mathbb^. Acreditamos que isso possa ser útil também ao estudo de problemas elípticos de fronteira para operadores de Boutet de Monvel com símbolos SG em certas classes de variedades não compactas. / We are going to present two results concerning K-theory of C^{*} algebras of classes of pseudodifferential operators that are globally defined in \\mathbb^. The first result is the proof of the regularity of the \\eta function for classical operators with Shubin symbols. We are going to show that the algebra of classical pseudodifferential operators in \\mathbb^ with Shubin symbols allows the construction of complex powers and a kind of Kontsevich-Vishik trace in a very similar way as on compact manifolds, with even easier definitions. Then we show that we can define the \\zeta and \\eta functions also for these symbols. Finally we will show how the knowledge of simple facts about the K-theory of pseudodifferential operators with Shubin\'s symbols allows the proof of the regularity of the \\eta function at 0. For compact manifolds, this regularity is a result that has many implications. Therefore it may also be interesting for global operators in \\mathbb^. The second result is the evaluation of the K-theory of bounded operators generated by SG Boutet de Monvel operators of order (0,0) and type 0 in \\mathbb_^. Boutet de Monvel introduced his algebra to study the index of elliptic boundary value problems on compact manifolds. More recently a new approach was proposed by Melo, Nest, Schrohe and Schick to obtain results about the index of Fredholm operators using the K-theory of C^ algebras, a tool which was not well known when Boutet de Monvel published his work. The idea here is to show how one can evaluate the K-theory of the Boutet de Monvel operators with SG symbols in \\mathbb_^, where SG symbols is a class of symbols globally defined in \\mathbb^. We believe that this can be useful to the study of index of Fredholm problems also in the case of Boutet de Monvel operators with SG symbols in some classes of non-compact manifolds.
88

Crossed product C*-algebras of certain non-simple C*-algebras and the tracial quasi-Rokhlin property

Buck, Julian Michael, 1982- 06 1900 (has links)
viii, 113 p. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / This dissertation consists of four principal parts. In the first, we introduce the tracial quasi-Rokhlin property for an automorphism α of a C *-algebra A (which is not assumed to be simple or to contain any projections). We then prove that under suitable assumptions on the algebra A , the associated crossed product C *-algebra C *([Special characters omitted.] , A , α) is simple, and the restriction map between the tracial states of C *([Special characters omitted.] , A , α) and the α-invariant tracial states on A is bijective. In the second part, we introduce a comparison property for minimal dynamical systems (the dynamic comparison property) and demonstrate sufficient conditions on the dynamical system which ensure that it holds. The third part ties these concepts together by demonstrating that given a minimal dynamical system ( X, h ) and a suitable simple C *-algebra A , a large class of automorphisms β of the algebra C ( X, A ) have the tracial quasi-Rokhlin property, with the dynamic comparison property playing a key role. Finally, we study the structure of the crossed product C *-algebra B = C *([Special characters omitted.] , C ( X , A ), β) by introducing a subalgebra B { y } of B , which is shown to be large in a sense that allows properties B { y } of to pass to B . Several conjectures about the deeper structural properties of B { y } and B are stated and discussed. / Committee in charge: Christopher Phillips, Chairperson, Mathematics; Daniel Dugger, Member, Mathematics; Huaxin Lin, Member, Mathematics; Marcin Bownik, Member, Mathematics; Van Kolpin, Outside Member, Economics
89

The Resolvent Algebra Perspective on Point Interactions - A First Glance

Moscato, Antonio 19 March 2024 (has links)
Specific non-relativistic quantum mechanical one-dimensional systems, interacting via point interactions, are discussed within the resolvent algebra setting.
90

Relações de dispersão deformadas na cosmologia inflacionária / Dispersion relations in inflationary cosmology

Machado, Ulisses Diego Almeida Santos 24 September 2012 (has links)
Relação de dispersão é outro nome para a função Hamiltoniana, cujo conhecimento especica completamente a dinâmica de um sistema no formalismo da mecânica classica. Sua escolha está intimamente vinculada às simetrias do sistema e, no contexto cosmologico aqui apresentado, com as simetrias locais obedecidas pelas leis fsicas. Mais ainda, a contribuição da materia na dinâmica cosmologica reflete a escolha do grupo local de simetrias das leis fsicas. Por outro lado, o problema fundamental da cosmologia pode ser definido como a construção de um modelo de evolução temporal de estados que, sob as hipoteses mais simples sobre estados iniciais (digamos, que demande a menor quantidade de informação possível para serem enunciadas), prediga o estado atual observado. O paradigma inacionario é atualmente a ideia que melhor cumpre esta denição, uma vez que prediz que uma grande variedade de condições iniciais leva a aspectos fundamentais do universo observado. Contudo, os mecanismos usuais de realização da inflação sofrem de problemas conceituais. O ponto de vista deste trabalho e que a realização convencional da inflação, isto é, atraves dos campos escalares minimamente acoplados, é a formulação localmente relativisticamente invariante da inflação. A maneira de incluir quebras e deformações da estrutura de simetrias locais na cosmologia é não única e está associado ao chamado problema trans Planckiano da inflação. Analogamente, a motivação conceitual para incluir esse tipo de modicação tampouco é unica. Dependendo do esquema de realização, a versão localmente não relativstica da mesma pode apresentar graves diculdades de conciliação com observações atuais, ou apresentar vantagens conceituais em relacão ao modelo padrão de inflacão, enquanto em conformidade com observações cosmológicas. Da maneira como foi posto o problema fundamental da cosmologia, a escolha das simetrias locais influi na regra de evolução dos estados. O conceito de simetrias encontra sua formulação independente de teorias físicas no formalismo da teoria de grupos, mas consideraremos uma extensão da ideia, de aplicabilidade mais geral, a teoria das algebras de Hopf que, de certo modo, trata das simetrias de estruturas algebricas. Esta extensão é útil inclusive no trato de simetrias dos espacos não comutativos, uma das principais propostas fsicas que em última analise afeta a estrutura de simetrias locais do espaco-tempo. A expressão simetrias locais, por si só, não diz muito sem a consideração de regras de realização. Essas regras dependem da estrutura matematica das observaveis da teoria. Sob hipoteses muito gerais, que não especicam uma teoria em particular, é possível mostrar, não como um teorema matematico formal, mas como uma hipotese tecnicamente bem motivada, que existem apenas dois tipos de teorias fsicas: as classicas e as quânticas. Trabalharemos sob essas hipoteses, as quais se formulam algebricamente assumindo a estrutura de C*-álgebra para as observaveis físicas, outra motivação para o uso das álgebras de Hopf para descrição das simetrias da natureza. / Dispersion relation is another name for the Hamiltonian function whose knowledge completely specifies the dynamics in the formalism of classical mechanics. Its choice is intimately related to the symmetries of the system, and, in the cosmological context here exposed, with the local space-time symmetries obeyed by physical laws. For the other side, the fundamental problem of cosmology can be defined as a construction of a time evolution model of states which, under simplest possible hypothesis concerning initial conditions (say, which demands the minimal amount of information to be specified), predicts the present observed state. The inflationary paradigm is currently the idea which better accomplishes this definition, since it predicts that a great variety of initial conditions lead to essential aspects of observed universe. The usual mechanisms of inflation suffer, however, with conceptual problems. The point of view of this work is that the usual realization of inflation based on weakly coupled scalar fields is the local relativistic invariant realization. The way of including breaks and deformations of the local space-time symmetries is not unique and it is associated to the so called Trans-Planckian problem of inflation. Analogously, the motivation to include this kind of modification is neither unique. Depending of the scheme of realization, the locally non-relativistic version may lead to serious difficulties in conciliation with observations, or to conceptual advantages over standard formulations while in accordance with observational data. In the way that was proposed the fundamental problem of cosmology, the choice of local symmetries affects the rule of evolution of states. The concept of symmetry finds its formulation independently of physical theories in the group theory formalism, but we will consider an extension of the idea, with wider applicability, the theory of Hopf algebras, which is about symmetries of algebraic structures. That extension is also useful to deal with symmetries of non-commutative spaces, one of the main physical proposals that affects the structure of space-time symmetries. The expression, local symmetries, by itself, does not say too much without considering realization rules. Those rules depend on mathematical structure of observables in the theory. Under very general hypothesis that do not specify a particular theory, it is possible to show, not as a formal mathematical theorem, but as a technically well motivated hypothesis, that only two types of physical theories do exist: The classical ones and the quantum ones. We are going to work under those hypothesis, which can be algebraically formulated assuming a C*-algebra structure for physical observables, another motivation for the use of algebraic structures like Hopf algebras for the description of nature\'s symmetries

Page generated in 0.0438 seconds