• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation expérimentale et numérique des scenarii de feu impliquant un conduit de fumée d'appareils de combustion bois / Experimental and Numerical Characterization of Fire Scenarios Involving a Flue Duct of Wood Burning Appliances

Cremona, Pierre 22 December 2017 (has links)
L’évolution structurelle des bâtiments résidentiels du fait des réglementations thermiques, environnementales ainsi que du déploiement du Règlement des Produits de la Construction génère des enjeux majeurs pour les fabricants de conduit de fumée, notamment en ce qui concerne la sécurité des habitants en cas d’incendie. Deux scenarii de résistance au feu sont considérés par la règlementation européenne : celui associé au développement du feu dans la pièce où se situe le conduit et celui-ci relatif au développement du feu dans le conduit lui-même, par l’inflammation de dépôts. Dans les deux cas, le conduit ne doit pas être vecteur de propagation du feu aux pièces et aux matériaux combustibles adjacents. Dans ce contexte, la présente étude vise à caractériser les principaux transferts thermiques mis en jeu au cours des deux scenarii et de mieux comprendre la cinétique de formation, de décomposition, d’inflammation et de combustion des dépôts au sein des conduits. Pour ce faire, une démarche expérimentale et numérique a été adoptée. La partie expérimentale permet de déterminer les caractéristiques chimiques (analyses élémentaire et chimique) et thermo-physiques (densité, conductivité, effusivité et capacité thermique, porosité, pouvoir calorifique) de 24 résidus provenant d’installations réelles ou créés en laboratoire dans des conditions de combustion maîtrisées. Ces résidus sont par la suite étudiés en analyseur thermogravimétrique et au Cône Calorimètre afin de déterminer les étapes de décomposition thermique, ainsi que les propriétés d’inflammabilité et de combustibilité, en inflammation pilotée et en auto-inflammation. Une base de données conséquente de l’ensemble des propriétés est alors générée. Un four de résistance au feu (selon la norme EN 1366-13) a permis l’étude de la participation du conduit à la propagation du feu d’une pièce à une autre, à travers la mesure de champs de température, notamment au-dessus du plafond. Les essais dans ce dispositif permettent l’acquisition de données essentielles à la définition des conditions initiales et aux limites nécessaires au développement et à la validation d’un modèle numérique développé sous Fluent. Ce modèle décrit les transferts thermiques par conduction, convection et rayonnement. Il permet d’estimer le niveau de température sur la paroi extérieure du conduit de fumée au-dessus du four, requis lors des essais de déclaration de performance EI selon la norme EN 1366-13 et ce, quelle que soit la configuration du conduit (diamètre, nature…). Les résultats obtenus répondent au besoin de Poujoulat, dont l’enjeu est de disposer d’un outil expérimental et numérique de développement de conduits résistant au feu et d’une base de données relative aux dépôts afin de préconiser des conseils d’utilisation aux habitants / The structural evolution of residential buildings due to thermal, environmental regulations and roll out of the Construction Products Regulation generate major challenge for chimney manufacturers, in particular with regard to the safety of residents during a fire. Two fire resistance scenarios are eloquent in European Regulations: the one associated with the development of fire in the room where the chimney is located and the last reported on the development of fire in the chimney itself, by ignition of the deposits. In both cases, the chimney must not be a vector for propagating fire to adjacent rooms and combustible materials. In this context, the present study aims to characterize the main thermal transfers involved in the two scenarios and to better understand the kinetics of formation, decomposition, ignition and combustion of the deposits within the chimney. To do this, an experimental and numerical approach was adopted. The experimental part allows to determine the chemical characteristics (elemental and chemical analyzes) and thermo-physical characteristics (density, conductivity, effusivity and thermal capacity, porosity, calorific value) of 24 residues from real installations or created in laboratory under representative conditions of combustion. These residues are then studied in thermogravimetric analyzers (TGA) and Cone Calorimeters in order to determine the thermal decomposition steps as well as the flammability and combustibility properties, in cases of piloted and auto-ignition. A consequent database of the set of properties has then been generated. A fire-resistant furnace (according to EN 1366-13) allowed the study of the chimney participation in the propagation of fire from one room to another, through the measurement of temperature fields, above the ceiling. The tests allow the acquisition of data essential to the definition of the initial conditions and the limits necessary for the development and the validation of a numerical model developed under Fluent. This model describes heat transfer by conduction, convection and radiation. It makes possible to estimate the temperature level on the outer wall of the chimney above the furnace, which is required in the EI performance declaration tests according to EN 1366-13, regardless of the configuration of the chimney (diameter, materials...). The results obtained correspond to the need for Poujoulat, whose challenge is to have an experimental and numerical tool for the development of fire-resistant chimney and a database relating to deposits in order to advise the habitants.
2

Evaluation du risque d'inflammation de gaz imbrûlés au cours d'un incendie en milieu sous-ventilé. / Evaluation of Unburnt Gases' Ignition Hazard During an Under-Ventilated Fire

Mathis, Etienne 04 July 2016 (has links)
Lors du déclenchement d’un incendie en milieu clos, la quantité d’oxygène du local décroît, entrainant une combustion incomplète. Des gaz chauds imbrûlés peuvent alors s’accumuler dans le local ou dans les gaines de ventilation et un accident thermique peut survenir suite à un apport d’air frais. Ce travail, réalisé pour AREVA, vise à quantifier et d’analyser ce risque, afin de pouvoir le prédire et le prévenir. Tout d’abord, une étude bibliographique a été réalisée afin de définir les paramètres d’auto-inflammation à partir du modèle de Frank-Kamenetskii. Celui-ci permet, après un bilan d’énergie, l’établissement d’un paramètre critique, δC, d’auto-inflammation du mélange. δC réunit la géométrie, la température (et la température ambiante) et la composition du mélange à l’auto-inflammation.Puis, la dégradation thermique du Polyéthylène Haute Densité en fonction de la densité surfacique de flux incident à la surface du matériau et de la sous-ventilation a été caractérisée (cinétique de dégradation, productions gazeuses). Le Cône Calorimètre à Atmosphère Contrôlée a été employé.Ce travail expérimental a permis d’obtenir plusieurs mélanges gazeux suivant les conditions. La dernière partie de l’étude a permis, à partir de δC, de poser le volume de mélange via le rayon comme critère d’auto-inflammabilité des mélanges. En imposant une température, en faisant varier la fraction volumique de chaque gaz combustible entre sa LII et LSI le risque d’accident thermique a été défini. / After the beginning of a fire in a closed room, the oxygen rate in the atmosphere decreases. This implies an incomplete combustion and unburnt gases production. These ones may accumulate in the room or in ventilation pipes, and, after mixing with fresh air, auto-ignite. This could trigger a thermal accident such as backdraft. This present work, conducted for AREVA, aims to analyse this hazard and provide some methods to predict and prevent it. First, a bibliographical research, was carried on to define a mixture’s auto-ignition parameters. This study was based on Frank-Kamenetskii’s model: after establishing the energetics balance between the heat produced by combustion, and the one consumed by conduction, an auto-ignition critical parameter, δC, was defined. It reunites the system’s geometry, temperature (or the room temperature) and composition.Then, the High Density Polythene degradation in a Controlled Atmosphere Cone Calorimeter was studied. The effect on the material’s degradation of under-ventilation and of the energy brought has been tested through the oxygen concentration in the atmosphere and the incident heat flux.During this work many different gas mixtures were analyzed. On the ground of δC formula, the final step was to set the volume, through the radius (characteristic size of the system), as an auto-ignition parameter. Making the concentration of each combustible varying between the LFL and UFL and imposing the temperature allowed to predict this hazard.

Page generated in 0.0645 seconds