• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 69
  • 10
  • 10
  • 7
  • 7
  • 7
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 372
  • 372
  • 191
  • 115
  • 101
  • 87
  • 78
  • 68
  • 62
  • 53
  • 49
  • 41
  • 39
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Partie 1 : synthèse d’hexahydroazépinones par un processus catalysé par un complexe de palladium de fonctionnalisation C–H et d’ouverture de cyclopropanes ainsi que l’arylation de liens C(sp2)–H dans la synthèse de fluorophores ; Partie 2 : premières synthèses totales des cannflavins A et C et synthèse en chimie en flux continu de l’acétyl phloroglucinol

Saint-Jacques, Kévin 04 1900 (has links)
Cette thèse est divisée en deux parties. La première porte sur l’utilité de la fonctionnalisation de liaisons C–H hybridées sp2 et sp3 dans la formation d’hétérocycles azotés et fluorophores bioactifs. La deuxième porte sur la première synthèse des cannflavins A, B et C ainsi que l’adaptation d’une des étapes de synthèse en chimie en flux continu. Dans la première partie, il a tout d’abord été montré que la fonctionnalisation de liaisons C(sp3)–H de cyclopropanes catalysée par un complexe de palladium peut être utilisée dans la synthèse de cyclopropanes plus complexes, et ce de façon intramoléculaire. Lorsque le motif cyclopropane n’est pas substitué, ce dernier ouvre afin de former sélectivement l’hexahydroazépinone avec une énamide cyclique. Une fois cette réaction optimisée, elle a été utilisée pour former de nouvelles molécules comportant cet hétérocycle azoté. Cette réaction peut aussi être transposée en flux continu afin de fournir le produit d’ouverture cyclique de façon ininterrompue et ce pendant plusieurs heures. Dans les travaux futurs, nous suggérons de trouver une façon de fonctionnaliser cet hétérocycle dans une réaction de type «one-pot». Ensuite, nous avons montré la force de la fonctionnalisation de liaisons C(sp2)–H via une réaction d’arylation catalysée par un complexe de palladium pour la synthèse de benzo[a]imidazo[2,1,5‑c,d]indolizines, un fluorophore bioactif. Une fois la synthèse complétée, ceux-ci ont été testés dans la bioconjugaison avec un enzyme de type glutamine trans-amidase. Les travaux de biologies sont présentement en cours dans le groupe de la Pre Joelle Pelletier. Dans la seconde partie, nous nous sommes intéressés à la synthèse des cannflavins A, B et C. Ces molécules sont caractérisées comme étant des flavonoïdes qui sont propres à la plante de Cannabis Sativa. En effet, comme une majorité des produits naturels de cette plante, tels que le Δ9-THC et le CBD, ces flavonoïdes sont des molécules bioactives qui ont des propriétés anti-inflammatoires, neuro-protectrices, anti-cancers, anti-parasitiques, et bien d’autres. Nous avons donc effectué la synthèse des cannflavins A, B et C afin d’avoir des quantités adéquates de matériel pour des études biologiques. Dans la synthèse de première génération, nous avons produit la cannflavin A et C en douze étapes avec des rendements globaux de 8,4% et 12%, respectivement. Le développement d’une deuxième stratégie de synthèse a mené à une amélioration concrète de la synthèse de la cannflavin C en diminuant le nombre d’étapes de synthèse de moitié et doublant le rendement, soit en six étapes avec 23%. Ce raccourci synthétique a été mis en place grâce à l’implication d’un complexe de type BF2 comme groupement protecteur et directeur pour fournir un intermédiaire avancé de la synthèse précédente. Les travaux actuels consistent à l’élaboration d’une stratégie similaire pour la synthèse de cannflavin A. Enfin, nous avons optimisé la synthèse de l’acétyl phloroglucinol en flux continu, qui est notamment le matériel de départ pour la synthèse des Cannflavins. En effet, cette réaction d’acylation de Friedel-Crafts a été optimisée en flux continu pour donner l’acétyl phloroglucinol avec 98% de rendement en utilisant le BF3•OEt2 comme acide de Lewis et AcCl comme agent acylant dans l’EtOAc comme solvant vert. La mise en échelle de cette réaction montre qu’il est possible de produire le composé désiré avec une productivité élevée de 99 g/h. Les travaux futurs de ce projet sont d’utiliser le complexe BF2 généré dans cette réaction pour produire un intermédiaire avancé de la cannflavin A. / This thesis is divided into two parts. This first one discusses the use of C–H functionalization of sp2 and sp3 center in the formation of nitrogen-containing heterocycles. The second one describes the first total synthesis of cannflavins A, B and C as well as the continuous flow production of the starting material of this total synthesis. In the first part, we have shown that the use of palladium-catalyzed C(sp3 )–H functionalization of cyclopropanes can be used to synthesize more complex molecules in an intramolecular fashion. When the cyclopropyl motif bears no substitutions, ring opening of the cyclopropane occurs to selectively yield the hexahydroazepinone heterocyclic core as the enamide isomer. We have taken advantage of this opportunity to prepare a variety of hexahydroazepinones using this novel strategy. This reaction can be converted to flow chemistry, thus shortening the reaction time and providing the desired product continuously over several hours. In future work, we will use the enamide motif to further functionalize the azepinone nucleus in a one-pot manner. Furthermore, we have demonstrated the power of the C–H functionalization strategy in the synthesis of benzo[a]imidazo[2,1,5-c,d]indolizines, a fluorescent heterocycle, via palladiumcatalyzed arylation of C(sp 2 )–H bonds. After synthesis, this fluorophore was bioconjugated with a glutamine transamidase enzyme. Biological tests of these compounds are currently being carried out by the group of Pr Joelle Pelletier. In the second part, we are interested in the synthesis of cannflavins A, B and C. These compounds belong to the class of flavonoids and are unique to the Cannabis sativa plant. Like the majority of natural products found in this plant, such as Δ9 -THC and CBD, these flavonoids are indeed bioactive and show various medicinal properties such as being potent anti-inflammatory, neuro-protective, anti-cancer, anti-parasitic and many more. For these reasons, we carried out the total synthesis of cannflavin A, B and C. In the first generation strategy, we achieved the first total synthesis of cannflavin A and C in twelve linear steps with 8.4% and 12% global yield, respectively. The development of a second-generation strategy led to an improvement for the synthesis of cannflavin C in terms of halving the number of steps required and doubling the overall yield, giving 23% yield in six steps. This synthetic shortcut was achieved using a BF2 complex as a traceless directing and protecting group to provide a highly functionalized intermediate in the synthesis of cannflavin C. Current work focuses on the elaboration of a similar strategy for a shorter total synthesis of cannflavin A. We also optimized the synthesis of acetylphloroglucinol in continuous flow chemistry, this phenol being the starting material of Cannflavins. In fact, this Friedel-Crafts acylation using BF3•OEt2 as the Lewis acid and AcCl as the acylating agent in EtOAc as the green solvent has been optimized to achieve 98% yield with a productivity of 99 g/h in the scale-up setup. From now on, we are trying to use this continuously produced BF2 complex to synthesize a late intermediate in the synthesis of cannflavin A.
262

Rhodium-mediated Activation and Borylation Reactions of Fluorinated Olefins

Xu, Conghui 03 December 2020 (has links)
Die Dissertation beinhaltet Studien zur Reaktivität von Rhodiumkomplexen gegenüber unterschiedlichen ungesättigten fluorierten Olefinen mit einem Fokus auf C–F Aktivierungs- und Borylierungsreaktionen. Der Rhodium(I)hydridokomplex [Rh(H)(PEt3)3] (1) wurde als Katalysator in den Reaktionen von HFO-1234yf, HFO-1234ze, HFO-1225zc bzw. HFO-1225ye (Z) mit HBpin verwendet. Dabei wurden Produktgemische bestehend aus Borylierungsprodukten erhalten. Die selektive Mono- und Dihydroborierung von 3,3,3-Trifluorpropin konnte durch Verwendung von Komplex 1 als Katalysator erreicht werden. Trifluorethylen konnte durch die Reaktion mit HBpin und Komplex 1 als Katalysator in ein Produktgemisch überführt werden. Stöchiometrische Reaktion zeigen, dass Komplex 1 sowohl unter C–F-Bindungsaktivierung reagiert als auch die Koordination von Trifluorethylen, unter Bildung des Komplexes trans-[Rh(F)(ƞ2-CF2CFH)(PEt3)2], stattfindet. Im Falle von 1,1,2-Trifluorbuten wurde ebenfalls eine C–F-Bindungsaktivierung durch Komplex 1 beobachtet. Mechanistische Untersuchungen der Reaktion von Komplex 1 und 1,1,2-Trifluorbuten bei unterschiedlichen Temperaturen zeigten Hinweise für Koordination & Insertion des Alkens, sowie anschließende β-H-Eliminierung und oxidative C–F-Bindungsadditions- und reduktive HF-Eliminierungsschritte. Außerdem konnte durch Verwendung von Komplex 1 oder [Rh(Bpin)(PEt3)3] (3) als Katalysator eine stöchiometrische und katalytische Hydroborierung von Pentafluorstyren mit HBpin erreicht werden. Die Rhodium(I)komplexe 1 und 3 sind in der Lage das Olefin zu koordinieren und die C–F-Bindung zu aktivieren, während die Verwendung der Verbindung [Rh(Me)(PEt3)3] die C–H-Bindungsaktivierung fördert. Bei 333 K findet die Aktivierung des fluorierten Aromaten in der 4-Stellung statt, während bei Raumtemperatur die Aktivierung in der 2-Stellung bevorzugt ist. / The dissertation reports on studies on the reactivity of rhodium complexes towards different fluorinated olefins with a focus on C–F activation steps and borylation reactions. The rhodium(I) hydrido complex [Rh(H)(PEt3)3] (1) was employed as catalyst in the reactions of HFO-1234yf, HFO-1234ze, HFO-1225zc and HFO-1225ye with HBpin. A product mixture consisting of borylation products was obtained. Selective mono and dihydroboration reactions of 3,3,3-trifluoropropyne were achieved by employing complex 1 as the catalyst. Similarly, trifluoroethylene was also converted into a mixture of products by the reaction with HBpin with complex 1 as the catalyst. A stoichiometric reaction of complex 1 resulted in the C–F bond activation as well as a coordination of trifluoroethylene to give complex trans-[Rh(F)(ƞ2-CF2CFH)(PEt3)2]. Furthermore, the C–F bond activation was also realized with complex 1 and 1,1,2-trifluorobutene. Mechanistic investigations of the reaction of complex 1 towards 1,1,2-trifluorobutene at variable temperatures indicated the formation of products of coordination, insertion of the olefin and subsequent β-H elimination, C–F oxidative addition as well as HF reductive elimination steps. Furthermore, when utilizing complex 1 or [Rh(Bpin)(PEt3)3] (3) as catalysts, stoichiometric and catalytic hydroboration reactions of pentafluorostyrene occurred with HBpin. The rhodium(I) complexes 1 and 3 were capable of the coordination of the olefin and a C–F bond activation reaction with pentafluorostyrene, while complex [Rh(Me)(PEt3)3] promoted the C–H bond activation. At 333 K, the activation of the fluorinated aromatic ring occurred at the 4-position, while at room temperature, an activation at the 2-position was preferred.
263

Iron-Catalyzed Oxidative C−O and C−N Coupling Reactions Using Air as Sole Oxidant

Purtsas, Alexander, Rosenkranz, Marco, Dmitrieva, Evgenia, Kataeva, Olga, Knölker, Hans-Joachim 04 June 2024 (has links)
We describe the oxygenation of tertiary arylamines, and the amination of tertiary arylamines and phenols. The key step of these coupling reactions is an iron-catalyzed oxidative C−O or C−N bond formation which generally provides the corresponding products in high yields and with excellent regioselectivity. The transformations are accomplished using hexadecafluorophthalocyanine−iron(II) (FePcF16) as catalyst in the presence of an acid or a base additive and require only ambient air as sole oxidant.
264

Reactivities of cyclonickelated complexes in the context of C−H functionalization chemistry

Sarker, Rajib Kumar 02 1900 (has links)
Ce mémoire décrit les résultats d'une étude conçue pour tester l'efficacité d'une approche particulière visant à étudier le mécanisme de la fonctionnalisation des hétéroatomes C dans les liaisons C-H catalysée par les composés des métaux de transition. L'approche en question consiste à examiner les réactivités d'une famille de complexes nickelacycliques sélectionnés pour servir de système modèle pour les intermédiaires postulés être générés in situ lors de protocoles de fonctionnalisation C−H appelés « one-pot » (en une seule étape). Ainsi, les complexes nickelacycliques susmentionnés, y compris les complexes dimériques κC, κP-{2-OPR2,4-R’-C6H4}2Ni2(μ-Br)2 et leurs adduits acétonitrile monomères κC, κP-{2-OPR2,4-R’-C6H4}Ni(Br)(NCMe), obtenus par nickelation C−H des arylphosphinites, R2P(OAr), ont été traités avec des substrats appropriés possédant une liaison faible/labile telle que des liaisons simples N–O et N–N pour déterminer si la rupture des liaisons cibles mènerait à une coupure C–O ou C–N. En tant que substrats pour les couplages C–O, nous avons testé les réactivités des hydroxylamines (PhCH2)2NOH et (CH3CH2)2NOH, en plus du substrat protégé par le benzyle PhCH2ONH2. Les réactivités observées entre ces substrats et les complexes nickelacycliques modèles susmentionnés ont révélé trois schémas distincts influencés par la nature du complexe de nickel, le solvant utilisé dans la réaction et le substrat spécifique utilisé. Premièrement, pour le substrat protégé par le benzyle PhCH2ONH2, le résultat implique la formation directe d'adduits liés à l'azote avec tous les complexes de nickel testés. Deuxièmement, le complexe dimérique non-substitué (R’ = H) réagit avec (CH3CH2)2NOH et (PhCH2)2NOH dans CH2Cl2, produisant l'amine oxyde zwitterionique κC, κP-{2-OPR2-C6H5}Ni{κO-ONH(CH3CH2)2}Br et l'aminooxyde bidente (i-R2POPh)Ni{κO,κN-ON(CH2Ph)2}Br, respectivement. Enfin, la réaction parallèle de complexes de nickel substitués (R’ = Cl, OMe, NMe2) avec des hydroxylamines fournit des adduits à base d'imines résultant de la déshydratation de (CH3CH2)2NOH et (PhCH2)2NOH. Cette dernière réactivité atteint des résultats optimaux en acétonitrile, bien qu'elle se manifeste également dans une moindre mesure en C6D6 si la réaction se poursuit pendant plus de 24 heures. Divers scénarios mécanistiques ont été explorés pour élucider la transformation observée des hydroxylamines en imines, tous indiquant deux voies mécanistiques possibles. Le mécanisme le plus en évidence est l'attaque nucléophile sur l'acétonitrile coordonné, résultant en une déshydratation nette de l'hydroxylamine avec l'élimination de la molécule d'acétamide. Dans l'ensemble, cette étude a montré que cette réaction peut également se produire par des voies radicalaires pour lesquelles la coordination de l'acétonitrile au nickel n'est pas nécessaire. S'appuyant sur les résultats décrits ci-dessus, nous avons réalisé une autre étude de réactivité entre les complexes nickelacycliques susmentionnés et les hydroxylamines en conjonction avec des oxydants, en utilisant spécifiquement le TEMPO (2,2,6,6-tétraméthyl-1-pipéridinyl-N-oxyde). Cette investigation a donné naissance à une série de nouveaux complexes Ni-TEMPOH, où TEMPOH représente le 2,2,6,6-tétraméthyl-1-pipéridinyl-N-hydroxyde. Ces composés intrigants nous ont offert l'occasion unique d'explorer leur chimie de coordination avec divers nucléophiles, comme expliqué dans le chapitre 4. Cette étude a montré que le complexe Ni-TEMPOH peut être obtenu par deux voies distinctes : 1) en convertissant le TEMPO en TEMPOH avant de réagir avec le précurseur dimérique, et 2) en formant un complexe zwitterionique par réaction du dimère avec l'hydroxylamine, suivi du traitement avec le TEMPO. Les investigations de réactivité mettent en évidence que le MeCN déplace efficacement la fraction TEMPOH des complexes Ni(II)-TEMPOH, tandis que des ligands plus volumineux tels que le PPh3 et le DMSO échouent à montrer une réactivité similaire. Cela souligne le rôle crucial des considérations stériques dans la détermination de la réaction de substitution de ce complexe spécifique. De plus, l'étude révèle qu'en réagissant ces complexes avec d'autres nucléophiles tels que la morpholine et l'imidazole, des produits correspondants sont générés, notamment un adduit de morpholine et un complexe bis-imidazole, respectivement. L'analyse RMN du complexe bis-imidazole montre qu'en solution, il existe sous forme de complexes mono-imidazole, ce qui indique qu'un processus d'échange pourrait avoir lieu en solution. Fait intéressant, un aspect supplémentaire de cette recherche implique des tentatives d'oxydation du complexe Ni(II)-TEMPOH en utilisant l'AgOCOCF3. Ce processus conduit au remplacement du Br par l'OCOCF3, donnant ainsi un complexe acétate. En plus des enquêtes précédentes concernant les hydroxylamines, nous avons examiné le potentiel de couplage C–N du 4-amino-4H-1,2,4-triazole comportant des liaisons N–N simples lorsqu'il est réagi avec nos complexes nickelacycliques. Bien que nous ayons détecté des indications d'une voie de décomposition qui pourrait impliquer la rupture de la liaison N–N, cette réactivité est un élément mineur dans le panorama de réactivité observé, la voie principale conduisant à la formation de simples adduits du substrat triazole. En conséquence, nous avons réussi à isoler à la fois des adduits mononucléaires, à savoir {κP,κC-(i-Pr)2PO-Ar}Ni(Br)(κN-4-amino-4H-1,2,4-triazole), et des adduits dinucléaires à pont triazole, spécifiquement [{κP,κC-(i-Pr)2PO-Ar}Ni(Br)}2(μ,κN,κN-4-amino-4H-1,2,4-triazole). En utilisant la surveillance par RMN à température variable des réactions impliquant les précurseurs de nickel et le substrat triazole, nous avons révélé que les nouveaux adduits triazoles s'engagent dans un processus d'échange dynamique. L'analyse des données de RMN a révélé que les adduits triazoles mononucléaires et dinucléaires sont impliqués dans des équilibres dynamiques avec leurs adduits correspondants d'acétonitrile. Une observation intéressante émerge : les espèces cristallines récupérées dans la solution sont systématiquement soit les adduits triazoles mononucléaires, soit les adduits triazoles dinucléaires, jamais les deux simultanément. De plus, il semble que le choix de l'adduit optimal pour la cristallisation dépend du précurseur spécifique utilisé. Les précurseurs [{κP,κC-(i-Pr)2PO-C6H4}Ni(μ-Br)]2 et [{κP,κC-(i-Pr)2PO-(4-MeO-C10H5)}Ni(μ-Br)]2 produisent exclusivement des produits mononucléaires, tandis que [{κP,κC-(i-Pr)2PO-(5-OMe-C6H3)}Ni(μ-Br)]2, [{κP,κC-(i-Pr)2PO-(5-Cl-C6H3)}Ni(μ-Br)]2, et [{κP,κC-(i-Pr)2PO-(C10H6)}Ni(μ-Br)]2 produisent exclusivement les produits dinucléaires. / This thesis describes the results of a study designed to test the effectiveness of a particular approach for probing the mechanism of transition metal-catalyzed C-heteroatom functionalization of C–H bonds. The approach in question involves examining the reactivities of a family of nickelacyclic complexes selected to serve as a model system for intermediates postulated to be generated in-situ during so-called one-pot C–H functionalization protocols. Thus, the said nickelacyclic complexes, including the dimeric complexes κC,κP-{2-OPR2,4-R’-C6H4}2Ni2(μ-Br)2 and their monomeric acetonitrile adducts κC,κP-{2-OPR2,4-R’-C6H4}Ni(Br)(NCMe), which were obtained via the C–H nickelation of arylphosphinites, were treated with suitable substrates possessing a weak/labile bond such as N–O and N–N single bonds to see if rupture of the target bonds would lead to C–O or C–N coupling. As substrates for studying C–O coupling reactions, we tested the reactivities of the hydroxylamines (PhCH2)2NOH and (CH3CH2)2NOH in addition to the benzyl protected substrate PhCH2ONH2. The reactivities observed between these substrates and the above-mentioned model nickelacyclic complexes revealed three distinct patterns influenced by the nature of the Ni complex, the solvent employed in the reaction, and the specific substrate used. Firstly, for the benzyl-protected substrate PhCH2ONH2, the outcome involves straightforward formation of N-bound adducts with all Ni complexes tested. Secondly, the unsubstituted dimeric complex (R’ = H) reacts with (CH3CH2)2NOH and (PhCH2)2NOH in CH2Cl2 to give the zwitterionic amine oxide κC,κP-{2-OPR2-C6H5}Ni{κO-ONH(CH3CH2)2}Br and the bidentate aminoxide (i-R2POPh)Ni{κO,κN-ON(CH2Ph)2}Br, respectively. Lastly, the parallel reaction of substituted Ni complexes (R’ = Cl, OMe, NMe2) with hydroxylamines furnishes imine-based adducts originating from the dehydration of (CH3CH2)2NOH and (PhCH2)2NOH. This latter reactivity attains optimal results in acetonitrile, although it also manifests to a lesser extent in C6D6 if the reaction proceeds for over 24 hours. Various mechanistic scenarios have been explored to elucidate the observed transformation from hydroxylamines to imines, all of which indicate two possible mechanistic pathways. The most prominent mechanism is the nucleophilic attack on coordinated acetonitrile resulting in net dehydration of hydroxyl amine with elimination of acetamide molecule. Overall, this study showed that this reaction can also proceed through radical pathways for which coordination of acetonitrile to nickel is not necessary. Building upon the findings described above, we carried out another reactivity study between the nickellacyclic complexes mentioned above and hydroxylamines in conjunction with oxidants, specifically employing TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl). This investigation yielded a series of new Ni-TEMPOH complexes, where TEMPOH stands for 2,2,6,6-tetramethyl-1-piperidinyl-N-hydroxy. These intriguing compounds have afforded us a unique opportunity to delve into their coordination chemistry with diverse nucleophiles, as elucidated in chapter 4. This study showed that the Ni-TEMPOH complex can be accessed through two distinct pathways: 1) converting TEMPO to TEMPOH prior to reacting with the dimeric precursor, and 2) forming a zwitterionic complex through the reaction of the dimer with hydroxylamine, subsequently treated with TEMPO. Reactivity investigations highlight that MeCN effectively displaces the TEMPOH moiety from the Ni(II)-TEMPOH complexes, while bulkier ligands such as PPh3 and DMSO fail to exhibit similar reactivity. This underscores the pivotal role of steric considerations in determining the substitution reaction of this specific complex. Furthermore, the study reveals that treating these complexes with other nucleophiles such as morpholine and imidazole, the corresponding charge-neutral mono(morpholine) adduct and cationic bis-imidazole adduct. NMR analysis of the latter complex indicates that in solution it exists as a mono-imidazole adduct undergoing exchange processes in solution. Interestingly, an additional facet of this research involves attempts to oxidize the Ni(II)-TEMPOH complex using AgOCOCF3. This process leads to the replacement of Br with OCOCF3, yielding an acetate complex. In addition to the above investigations involving hdroxylamines, we have examined the C–N coupling potential of 4-Amino-4H-1,2,4-triazole featuring N–N single bonds when reacted with our nickelacyclic complexes. Although we have detected indications of a decomposition pathway that could involve N–N bond cleavage, this reactivity is a minor element within the broader reactivity landscape observed, the primary route leading to the formation of simple adducts of the triazole substrate. As a result, we have isolated both mononuclear adducts, namely {κP,κC-(i-Pr)2PO-Ar}Ni(Br)(κN-4-amino-4H-1,2,4-triazole), and triazole-bridged dinuclear adducts, specifically [{κP,κC-(i-Pr)2PO-Ar}Ni(Br)}2(μ,κN,κN-4-amino-4H-1,2,4-triazole). By employing variable temperature NMR monitoring of the reactions involving the Ni precursors and the triazole substrate, we unveiled that the newly formed triazole adducts engage in a dynamic exchange process. Analysis of the NMR data revealed that both mono- and dinuclear triazole adducts are engaged in dynamic equilibria with their corresponding acetonitrile adducts. Interestingly, a noteworthy observation emerges: the crystalline species retrieved from the solution are consistently either the mononuclear or the dinuclear triazole adduct, never both simultaneously. Moreover, it appears that the selection of the favored adduct for crystallization is contingent upon the specific precursor used. Precursors [{κP,κC-(i-Pr)2PO-C6H4}Ni(μ-Br)]2 and [{κP,κC-(i-Pr)2PO-(4-MeO-C10H5)}Ni(μ-Br)]2 exclusively yield mononuclear products, whereas [{κP,κC-(i-Pr)2PO-(5-OMe-C6H3)}Ni(μ-Br)]2, [{κP,κC-(i-Pr)2PO-(5-Cl-C6H3)}Ni(μ-Br)]2, and [{κP,κC-(i-Pr)2PO-(C10H6)}Ni(μ-Br)]2 exclusively yield the dinuclear products.
265

Spektroskopische und präparative Untersuchungen homogener und immobilisierter Übergangsmetall-Komplexe sowie ihrer katalytischen Aktivität in intramolekularen C-H-Aminierungen

Fischer, Felix Richard 25 June 2024 (has links)
Die Mitwirkung bei dem Sonderforschungsbereich 1333 (SFB 1333) eröffnete die exklusive Gelegenheit, eingehende Kenntnisse über Theorie und Praxis der Röntgenabsorptions-spektroskopie (XAS) zu erwerben. Diese Expertise fand im Rahmen eigenständig geleiteter Kooperationsprojekte auf dem Gebiet der Rh- und Ru-Koordinationschemie vielseitige Anwendung: Neben der Untersuchung Lösungsmittel-bedingter Ligandensubstitutionen zählten auch mechanistische Studien homogen-katalysierter Transformationen sowie die spektroskopische Evaluierung verschiedener Immobilisierungsstrategien zu dem Anwendungs-Portfolio der XAS-Analyse. Für die Forschungsgruppe Plietker erwies sich XAS als ein geeignetes Instrument, um die Entwicklung des Konzepts der molekularen heterogenen Katalyse in definierten, dirigierenden Geometrien zu unterstützen. Das flexible Anwendungsspektrum dieser Spektroskopie-Methode gestattete, das positive Resultat der Immobilisierung eines Ru-basierten H2-Autotransfer¬katalysators auf spektroskopischem Niveau zu verifizieren. Eingehende XANES- und EXAFS-Analysen untermauerten dabei, dass dessen Fixierung innerhalb des Porensystems eines SBA-15-Materials lediglich mit einer marginalen strukturellen oder elektronischen Beeinflussung des Ru-Zentralatoms einherging. Außerdem ließen sich die chemischen Auswirkungen einer variierenden Distanz zwischen immobilisiertem Ru-Komplex und Porenwand auf das Zentralatom analysieren sowie die katalytisch aktive Spezies des recyclierten Ru-Komplexes mit hoher Wahrscheinlichkeit identifizieren. In der parallelen Untersuchung einer bis dato nur oberflächlich erforschten Kategorie kationischer Fe-Diazo-Komplexe erwies sich XAS zudem als Schlüsselmethode für die Veranschaulichung des Elektronendichte-abhängigen Equilibriums zwischen trigonal-bipyramidalem und oktaedrischem Bindungsisomer. Ferner wurden bei dieser Untersuchung deutliche Hinweise auf die Empfindlichkeit dieser Gleichgewichtslage gegenüber einer fortwährenden Exposition mit harter Röntgenstrahlung sowie der CLICK-Chemie-basierten Immobilisierung in mesoporösem Trägermaterial offensichtlich. Neben der Analyse homogener und immobilisierter Übergangsmetall-Komplexe wurde das Spektrum der in der Forschungsgruppe Plietker bisher einzig in Mikrowellen-Reaktoren praktizierten C H-Aminierungen um die bei Raumtemperatur stattfindende, TBA[Fe]-katalysierte Sultambildung erweitert. Deren Anwendungsbreite ließ sich durch die Erarbeitung eines synthetischen Zugangs zu verschiedenen o-monofunktionalisierten, aber auch asymmetrisch 2,6-difunktioanlisierten Arylsulfonylaziden, über das bisher in der Literatur bekannte Maß ausdehnen. Neben präparativen Untersuchungen, als Teil der für diese Insertionsreaktion durchgeführten Mechanismusstudie, erfolgten im Rahmen eines Forschungsaufenthaltes an der University of Rochester erste Mössbauer-Analysen des postulierten TBA[Fe]-Nitren-Intermediats. Darüber hinaus erwies sich der bereits in der homogenen H2-Autotransferkatalyse etablierte Ru(NNNN)-Komplex ebenfalls als ein wirkungsvoller Katalysator für die intramolekulare C H Aminierung aromatischer Sulfonylazide. Der Einsatz seines immobilisierten Analogons erlaubte schlussendlich die Kombination der Fachgruppen-intern bisher ausnahmslos homogen-katalysierten C-H-Aminierung mit dem neuartigen Konzept der molekularen heterogenen Reaktionsführung in definierten, dirigierenden Geometrien. / Participating in the Collaborative Research Center 1333 (CRC 1333) offered the exclusive opportunity to accumulate detailed knowledge in theory and application of X-ray Absorption Spectroscopy (XAS). This expertise was afterwards used in independently managed cooperation projects focusing on solvent-based ligand substitutions, mechanistic studies of homogeneously catalyzed transformations as well as the spectroscopic evaluation of different immobilization strategies. Within the Plietker research group, XAS became an adequate tool to support the development of the concept of molecular heterogeneous catalysis in confined geometries. XAS was applied to verify the successful immobilization of the Ru(NNNN)-based H2-autotransfer catalyst spectroscopically. XANES- and EXAFS analysis thereby proved the attachment of this complex in SBA-15 support with only small electronic and steric influence on the Ru-center. Furthermore, XAS provided valuable information about possible structural consequences for the ligand sphere caused by different distances between immobilized complex and pore wall as well as probably disclosed the catalytic active species that is immobilized in recycled solid support. In a parallel exploration of a so far only rudimentarily investigated category of cationic Fe-diazo complexes, XAS turned out to be the key method for visualizing the electron density dependent equilibrium between their trigonal-bipyramidal and octahedral coordination mode. In addition, this study also gathered information about the sensitivity of the underlying isomerization reaction to continuous exposition to hard X-rays as well as to the CLICK-chemistry based immobilization in mesoporous material. Beyond the analysis of these homogeneous and immobilized transition metal-complexes, the portfolio of the in the Plietker group so far only microwave-based C-H-amination reactions was expanded by a room temperature TBA[Fe]-catalyzed sultame formation. In order to increase its substrate scope, a new synthetic strategy for asymmetric 2,6-disubstituted arenesulfonyl azides was created guaranteeing the introduction of various carbon-based substituents. Next to preparative experiments as part of mechanistical studies for this insertion reaction, MÖSSBAUER analysis of the postulated TBA[Fe]-nitrene intermediate was performed during a research stay at the University of Rochester. Additionally, the homogeneous Ru(NNNN)-complex applied in H2-autotransfer reactions proved to efficiently catalyze the intramolecular C-H-amination of aromatic sulfonyl azides as well. The usage of its immobilized analogue finally culminated in the fusion of the group-intern only homogeneously catalyzed C-H-amination reactions with the novel concept of molecular heterogeneous catalysis in confined geometries.
266

Ruthenium(II)- and Copper(I)-Catalyzed C–H Functionalizations

Yang, Fanzhi 14 December 2015 (has links)
No description available.
267

Réactivité de complexes de métaux riches : activation de petites molécules, synthèse de nanoparticules et catalyse de couplage croisé

Demange, Matthieu 09 December 2011 (has links) (PDF)
La synthèse de composés organiques par des voies respectueuses de l'environnement et d'un coût modéré est aujourd'hui un défi majeur. Le recours à des complexes organométalliques qui permettent l'approche et la réaction de différents substrats est une solution attractive. Cette étude s'intéresse aux complexes formés à partir de métaux de groupe 10, stabilisés par des ligands de type diphosphine, et plus particulièrement à la formation d'espèces réduites très réactives. L'activation du phosphore blanc est ainsi présentée, puis cette démarche est étendue à la synthèse de nanoparticules de phosphures métalliques, obtenues à partir de nanoparticules métalliques. Enfin, un complexe bien défini de nickel au degré d'oxydation (0) permet d'activer le dioxyde de carbone, des liaisons C H, ou encore de catalyser des réactions de couplages croisés de type Negishi, résultats tout à fait remarquables.
268

C-H fonctionnalisation de purines : synthèse d’inhibiteurs potentiels de la HSP90 / C-H functionalization of purines : synthesis of potential inhibitors of HSP90

Sahnoun, Sophian 16 February 2011 (has links)
Les résistances aux traitements actuels contre le cancer incitent à trouver de nouvelles cibles thérapeutiques. Une de ces cibles, la hsp90 (heat shock protein 90), impliquée dans la maturation de protéines clientes oncogènes, se révèle très prometteuse car son inhibition induit la dégradation de ces protéines par la voie du protéasome.PU3 et PU24S sont des inhibiteurs de la hsp90 de type purine fonctionnalisés en position 8. Dans le but d’identifier des composés encore plus actifs et/ou de nouvelles familles d’inhibiteurs, nous avons développé de nouveaux procédés sélectifs métallo-catalysés permettant l’activation de liaisons C-H de divers hétérocycles, et en particulier des purines (adénines, xanthines). Ces nouvelles approches ont permis un accès direct et simple à de nombreuses purines fonctionnalisées en C-8 par des groupements aromatiques, hetéroaromatiques, éthyléniques et benzyliques. / Resistance to current treatments of cancer encourages finding new therapeutical targets. The heat shock protein 90 (hsp90) is a molecular chaperon which regulates the folding of many client proteins associated with all of the six hallmarks of cancer, and helps maintaining their proper conformation. Consequently, the hsp90 has become an exciting new target in cancer drug discovery since the inhibition of its ATPase activity leads to depletion of these client proteins via the proteasomal pathway. PU3 and PU24S are purine-based hsp90 inhibitors functionalized on C-8 position. In the aim to identify more active compounds and/or new subfamilies of inhibitors, we have developed new metal-catalyzed C-H activation processes of various heterocycles including purines and other azoles. These new and simple approaches have allowed the access to numerous C-8 functionalized purines bearing (het)aryl, alkenyl and benzyl moieties.
269

Directed C-H borylation for the synthesis of fused and ladder type conjugated oligomers and polymers

Crossley, Daniel January 2016 (has links)
The synthesis, photophysical and electronic properties of a series of novel boron containing fused and ladder type donor-acceptor (D-A) oligomers and polymers are reported. The synthesis was achieved through coordination of the basic functionality of the ubiquitous benzothiadiazole acceptor unit onto a boron Lewis acid followed by an electrophilic aromatic borylation resulting in the formation of fused and ladder type structures (termed borylative fusion). The novel C,N-chelated borane structures disclosed herein are a new member of a large family of tetra-coordinate organoboron compounds that are used for the construction of highly emissive materials. Upon borylation large bathochromic shifts in the absorption and fluorescence spectra were observed, DFT and cyclic voltammetry demonstrate that this is a result of a significant reduction of the LUMO energy levels whist the HOMO energy levels remains relatively unperturbed. These large bathochromic shifts lead to materials that show far red/NIR emission in the solid state with absolute quantum yields of up to 44%. Furthermore, the frontier molecular orbital energy levels of these fused structures can be modulated through judicious selection of the exocyclic boron substituents. These novel borocycles also proved stable to a range of cross-coupling conditions which facilitated further modulation of the frontier molecular orbitals and emissive properties. Borylative fusion was also applicable to D-A conjugated polymers, this represents a facile post-polymerisation functionalisation that is an effective method of modulating the photophysical properties of D-A conjugated polymers. Solution processed OLEDs with far red/NIR electroluminescence (EL) were fabricated from these materials. These devices showed good external quantum efficiency values (EQE) for the far red/NIR region of the electromagnetic spectrum (EQE > 0.4 % for maximum EL > 700 nm).
270

Experimental and Computational Studies on Ruthenium- and Manganese-Catalyzed C-H and C-C Activation

Rogge, Torben 30 October 2019 (has links)
No description available.

Page generated in 0.2231 seconds