• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New redox-active ligands on iron and cobalt for C-C bond forming reactions

Bayless, Michael Bruce 27 August 2014 (has links)
Redox-active ligands deliver redox equivalents to impart multi-electron functionality at 3d metals that typically undergo to one electron redox events. It was proposed that 3d metals with redox-active ligands could form unusually well-defined catalysts for C-C bond forming reactions to mimic palladium-type reactivity. Therefore, several new complexes containing an iron or cobalt with redox-active ligands were synthesized and tested for their ability to form new C-C bonds. A bis(iminosemiquinone) iron (III) complex was able to homocouple aryl Grignards using dioxygen as the terminal oxidant. However, ligand redistribution prevented detailed mechanistic study of the C-C bond forming reaction and led to catalyst degradation. To address the challenges seen in the iron catalyst a new cobalt electron transfer (ET) series containing a pincer-type bis(phenolate) N-heterocyclic carbene ligand (CoNHC) was synthesized. Studies indicate the CoNHC ET series spans multiple-electrons by corporative metal and ligand redox. These complexes were evaluated for cross-coupling of alkyl halides and aryl Grignards. Mechanistic studies imply that the low cross-coupling yields were due to ligand degradation. However, CoNHC catalytically activate cross-couples ether nitriles and aryl Grignards via a novel C-O bond activation leading to a new C-C bond. Findings concerning redox-active ligands on iron and cobalt for C-C bond forming reactions and implications for future research are discussed.

Page generated in 0.0892 seconds