• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the regulation and functioning of RNT-1 and BRO-1 in C. elegans

Brabin, Charles Edward January 2012 (has links)
The stem cell-like seam cells of the nematode, Caenorhabditis elegans, represent a tractable and powerful model for studying stem cell biology. rnt-1, the worm homologue of the mammalian RUNX family of transcription factors, together with the CBFβ homologue bro-1, is essential for the proliferation of the seam cells. RUNX genes and CBFβ are important regulators of stem cell development in mammals, and are associated with a variety of cancers. The worm seam cell model offers an opportunity to examine how these genes function in stem cell biology. The aim of this work was to shed light on the genetic network in which bro-1 and rnt-1 function, and to reveal the identity of regulators of these genes as well the downstream targets of the bro-1/rnt-1 pathway. Here, a number of genes that interact with bro-1 and rnt-1 have been identified. ELT-1, a GATA transcription factor, is shown to be a direct regulator of bro-1. Findings which show that the MEIS gene unc-62 acts upstream of bro-1/rnt-1 and regulates the symmetry of seam cell divisions are also presented. The seam cell marker, scm::gfp, is widely used in studies of the seam cells; here the results of an investigation into its identity and functional links are described. In addition, the mechanism underlying spatial regulation of rnt-1 was examined; this led to the discovery of distinct tissue-specific enhancer modules within an intron of this gene. Finally, interactions between pal-1 and bro-1/rnt-1 are reported and described. Together, these findings provide a framework for furthering our understanding of the mechanisms and genes associated with the functioning of bro-1 and rnt-1 in the worm.
2

The C. elegans primordial germline : a robust syncytial precursor for a thriving expansion

Bauer, Jack 09 1900 (has links)
La cellule est l’unité à la base de la vie. Elle est généralement délimitée par sa membrane et contient un noyau et du cytoplasme en plus d’autres composantes. Les cellules se divisent afin de maintenir et de perpétuer la vie par duplication de leur matériel génétique et par leur séparation en deux cellules physiquement distinctes durant la cytocinèse. Cependant, la division cellulaire est parfois modifiée et aboutit à la formation d’un tissu contenant plusieurs noyaux bordés d’une membrane unique appelé syncytium. Les syncytia sont fréquemment retrouvés chez les organismes vivants, bien que leurs fonctions et mode de formation restent peu compris. L’organisation en syncytium est conservée chez tous les animaux étudiés à ce jour au niveau de la lignée germinale dans laquelle les cellules partagent un cytoplasme commun par l’intermédiaire d’un pont intercellulaire stable. Dans la majorité des lignées germinales étudiées, les cellules sont directement connectées l’une à l’autre par un pont intercellulaire stable qui émerge de cytocinèses incomplètes. Cependant, certaines lignées germinales sont organisées autour d’une cavité commune à laquelle chaque cellule germinale est connectée. Dans ces lignées germinales, les mécanismes qui mènent à l’expansion du syncytium sont peu compris. Ma thèse décrit l’utilisation de la lignée germinale primordiale de C. elegans à son premier stade larvaire pour mieux comprendre l’organisation, l’expansion et la fonction des lignées germinales syncytiales. En utilisant la microscopie électronique et confocale, j’ai découvert que l’organisation du syncytium est fixée au premier stade larvaire. En effet, les deux cellules germinales primordiales (CGP) sont chacune individuellement connectée à une cavité cytoplasmique centrale par le biais de ponts intercellulaires stables. Nous avons nommé cette cavité le proto-rachis car l’organisation des CGP est identique à l’organisation de la gonade adulte. Chez l’adulte, les ponts intercellulaires qui connectent les cellules germinales au rachis sont stabilisés par des régulateurs d’actomyosine. Nous avons vérifié si cela était également le cas dans la gonade au premier stade larvaire. Tous les régulateurs présents dans la gonade adulte, sont aussi présent dans les ponts intercellulaires des CGP, mais la lignée germinale primordiale est réfractaire à la perturbation de la fonction de ces régulateurs. Ce résultat suggère que les régulateurs d’actomyosine sont organisés de manière très stable au premier stade larvaire. Afin de mieux comprendre comment le syncytium se développe dans la lignée germinale de C. elegans, j’ai ensuite suivi la première division des CGP par microscopie à temps réel. J’ai mis en évidence que l’anneau de cytocinèse se stabilise, puis se déplace vers le proto-rachis jusqu’à qu’il s’y intègre. Ces résultats indiquent que le syncytium se développe par cytocynèse incomplète. De plus, mes résultats montrent que la connexion au proto-rachis est maintenue durant la division des CGP. C’est pourquoi nous proposons un modèle pour l’expansion du syncytium dans lequel l’anneau de cytocinèse stabilise pour connecter une des cellules filles au proto-rachis, tandis que l’autre cellule fille est connecté par l’anneau stable qu’elle aura hérité de la cellule mère. Enfin, pour s’assurer que les mécanismes d’expansion du syncytium observés durant la division des CGP sont conservés au cours du développement de la gonade, j’ai conceptualisé et créé un dispositif de micro-fluidique qui en théorie permettrait de suivre plusieurs séries de division des CGP. En somme, mon travail de doctorat a fourni une caractérisation détaillée de la structure du syncytium dans la lignée germinale de C. elegans au premier stade larvaire, ainsi qu’un modèle pour l’expansion du syncytium. Mes découvertes indiquent que malgré des différences dans l’organisation des syncytia, la cytocinèse incomplète est un mécanisme conservé dans toutes les lignées germinales animales. Des travaux futurs seront nécessaires pour découvrir quelles voies de signalisation moléculaires sont sous-jacentes aux mécanismes de formation des syncytia, et ainsi de mieux comprendre quelle est la fonction de ces structures fascinantes. / The cell constitutes the basic unit of life. It is generally delimited by its membrane and contains a nucleus and cytoplasm amongst other components. To maintain and perpetuate life, cells divide by duplicating their genetic material, and by physically separating into two distinct cells during the process called cytokinesis. However, cell division is sometimes modified and leads to the formation of a tissue in which several nuclei are delimited by a single membrane, called a syncytium. Syncytial tissues are common amongst living organisms, but why and how they form remains unclear. The syncytial architecture is conserved in all studied animal germlines where germ cells share a common cytoplasm through stable intercellular bridges. In most animal germlines, the germ cells are directly connected with one another, and the stable intercellular bridges that connect the cells are known to arise from regulated incomplete cytokinesis. However, some germlines are organized around a central common cavity to which each germ cell is connected. In such germlines, the mechanisms of syncytium expansions remain unknown. My thesis describes the use of the C. elegans germline primordium at the first larval stage to better understand the organization, the expansion, and the function of germline syncytia. Using electron and confocal microscopy I found that the organization of the syncytium is established at the first larval stage. The two germ cells called the primordial germ cells (PGCs) each connect to a central cytoplasmic cavity through stable intercellular bridges. Because this organization is identical to the adult germline where each germ cell is connected to the central rachis, we termed the cavity between the PGCs proto-rachis. In the adult gonad, the intercellular bridges that connect the germ cells to the rachis are stabilized by actomyosin regulators, so I verified if this was also the case in the first larval stage gonad. All the regulators that localize to adult intercellular bridges were also present between the PGCs, but the primordial germ line is refractory to perturbation of these regulators. This suggests that the actomyosin regulators are organized in a very stable manner in the first larval stage germline. I next tracked the first division of the PGCs with live imaging to better understand how the syncytium expands in the C. elegans germline. I found that the cytokinetic ring stabilizes, then displaces towards the proto-rachis until it integrates into the syncytial structures. This finding suggests the syncytium expands by incomplete cytokinesis. In addition, my results indicate that the connection to the proto-rachis was maintained during PGCs division. We therefore propose a model in which the cytokinetic ring stabilizes and connects one of the daughter cells to the proto- rachis while the other cell is connected through the inherited stable ring from the mother cell. Finally, I designed and a created a microfluidic device that in theory would allow us to live image several rounds of PGCs division. This would confirm if the mechanisms of syncytium expansion that we observed during the first division of the PGCs are conserved in further development. My work has provided a detailed characterization of the syncytial structure in the C. elegans germline primordium as well as a model for syncytium expansion. My findings indicate that despite differences in the organization of the syncytium, incomplete cytokinesis is conserved as the mechanism for syncytium expansion in all animal germlines. Further research will be necessary to bring to light the molecular pathways underlying syncytium formation to have a better understanding of the function of these fascinating structures.

Page generated in 0.0853 seconds