• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 12
  • 11
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Interactions between platelets and complement with implications for the regulation at surfaces

Nilsson, Per H. January 2012 (has links)
Disturbances of host integrity have the potential to evoke activation of innate immunologic and hemostatic protection mechanisms in blood. Irrespective of whether the activating stimulus is typically immunogenic or thrombotic, it will generally affect both the complement system and platelets to a certain degree. The theme of this thesis is complement and platelet activity, which is intersected in all five included papers. The initial aim was to study the responses and mechanisms of the complement cascade in relation to platelet activation. The secondary aim was to use an applied approach to regulate platelets and complement on model biomaterial and cell surfaces.    Complement activation was found in the fluid phase in response to platelet activation in whole blood. The mechanism was traced to platelet release of stored chondroitin sulfate-A (CS-A) and classical pathway activation via C1q. C3 was detected at the platelet surface, though its binding was independent of complement activation. The inhibitors factor H and C4-binding protein (C4BP) were detected on activated platelets, and their binding was partly dependent on surface-exposed CS-A. Collectively, these results showed that platelet activation induces inflammatory complement activation in the fluid phase. CS-A was shown to be a central molecule in the complement-modulatory functions of platelets by its interaction with C1q, C4BP, and factor H. Platelet activation and surface adherence were successfully attenuated by conjugating an ADP-degrading apyrase on a model biomaterial. Only minor complement regulation was seen, and was therefore targeted specifically on surfaces and cells by co-immobilizing a factor H-binding peptide together with the apyrase. This combined approach led to a synchronized inhibition of both platelet and complement activation at the interface of biomaterials/xenogeneic cells and blood. In conclusion, here presents a novel crosstalk-mechanism for activation of complement when triggering platelets, which highlights the importance of regulating both complement and platelets to lower inflammatory events. In addition, a strategy to enhance the biocompatibility of biomaterials and cells by simultaneously targeting ADP-dependent platelet activation and the alternative complement C3-convertase is proposed.
32

Therapeutic Antibody Against Neisseria gonorrhoeae Lipooligosaccharide, a Phase-variable Virulence Factor

Chakraborti, Srinjoy 25 May 2017 (has links)
Neisseria gonorrhoeae (Ng) which causes gonorrhea has become multidrug-resistant, necessitating the development of novel therapeutics and vaccines. mAb 2C7 which targets an epitope within an important virulence factor, the lipooligosaccharide (LOS), is a candidate therapeutic mAb. Ninety-four percent of clinical isolates express the 2C7-epitope which is also a vaccine target. Ng expresses multiple LOS(s) due to phase-variation (pv) of LOS glycosyltransferase (lgt) genes. mAb 2C7 reactivity requires a lactose extension from the LOS core Heptose (Hep) II (i.e. lgtG ‘ON’ [G+]). Pv results in HepI with: two (2-), three (3-), four (4-), or five (5-) hexoses (Hex). How HepI glycans impact Ng infectivity and mAb 2C7 function are unknown and form the bases of this dissertation. Using isogenic mutants, I demonstrate that HepI LOS glycans modulate mAb 2C7 binding. mAb 2C7 causes complement (C’)-dependent bacteriolysis of three (2-Hex/G+, 4-Hex/G+, and 5-Hex/G+) of the HepI mutants in vitro. The 3-Hex/G+ mutant (resistant to C’-dependent bacteriolysis) is killed by neutrophils in the presence of mAb and C’. In mice, 2- and 3-Hex/G+ infections are significantly shorter than 4- and 5-Hex/G+ infections. A chimeric mAb 2C7 that hyperactivates C’, attenuates only 4- and 5-Hex/G+ infections. This study enhances understanding of the role of HepI LOS pv in gonococcal infections and shows that longer HepI glycans are necessary for prolonged infections in vivo. This is the first study that predicts in vitro efficacy of mAb 2C7 against all four targetable HepI glycans thereby strengthening the rationale for development of 2C7-epitope based vaccines and therapeutics.

Page generated in 0.0175 seconds