• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gynaecological product development facilitated through RP and Rapid Tooling

Barnard, L.J., Booysen, G.J., De Beer, D.J. January 2005 (has links)
Published Article / Atkinson distinguishes between four types of prototypes, categorised through its end-use: •Design or aesthetic prototypes •Geometrical prototypes •Functional prototypes •Technological prototypes Shigley and Mitchell define the design process according to the following six phases: Recognition of need Definition of problem Synthesis Analysis and optimization Evaluation Presentation The Centre for Rapid Prototyping and Manufacture (CRPM) of the Central University of Technology, Free State was asked to assist in the development of a newly developed gynaecological cream applicator. Apart from needing a freeform fabrication system to give form fit and function to the very complex design, the product needed Rapid Tooling / Rapid Manufacturing support to enable a first batch production for medical trials and evaluation. The paper will describe the total product development process alongside prototype categories described by Atkinson and design phases defined by Shigley and Mitchell (including some iterations enabled through timeous prototyping, including various Rapid Prototyping (RP) Technologies, soft tooling and vacuum casting). More importantly, results from Rapid Tooling for limited run production (due to the complexity of the product the cycle time of the Prototype Tool is fairly long), as well as the economical impact made possible through the support of CAD / CAM and RP Technologies, will be discussed.
2

Engineering data management: tools for process integration

Durham, Scott Franklin 15 September 2010 (has links)
In the last fifty years, process improvements in service and product based organizations have greatly improvement quality, decreased development time and reduced scrap by improving process efficiency. Terms such as Lean Engineering, Just in Time, Total Quality Management and certifications such as ISO 9000 have become commonplace. In support of these process improvements, Engineering Data Management is a toolkit for achieving a truly integrated environment within a technical business by allowing teams to work more closely together, improving speed and efficiencies within the organization. This report was created to introduce the reader to basic principles of EDM and how it can improve an organization’s ability to compete. / text
3

Industrial Silo Optimization

Gopinath, Varun January 2011 (has links)
This thesis aims to build a working design-analyze-optimize methodology for Alstom Power Sweden AB at Växjö, Sweden. In order to be profitable in today’s competitive industrial product market, it is necessary to engineer optimized products fast. This involves CAD design and FEA analysis to work within an optimization routine in a seamless fashion which will result in a more profitable product. This approach can be understood as a model-based design, where the 3D CAD data is central to the product life cycle. The present approach provides many benefits to a company because of the use of a central database ensure access to the latest release of the 3D model. This allows for a streamlined design to fabrication life cycle with inputs from all departments of a product based company. Alstom is looking into automating some of their design process so as to achieve efficiency within their design department. This report is the result of a study where an industrial silo is taken as an example. A design loop involving CAD design and FE analysis is built to work with an optimization routine to minimize the mass and also ensure structural stiffness and stability. Most engineers work with a lot of constraints with regard to material stock size and other design codes (e.g. Euro Codes). In this report an efficient way to design an industrial product in a 3D CAD (CATIA) program so as to stay within these constrains and still obtain credible computation results within an optimization loop will be discussed.
4

CODESIGN AND CONTROL OF SMART POWERED LOWER LIMB PROSTHESES

Abdelhadi, Mohamed January 2021 (has links)
No description available.

Page generated in 0.0461 seconds