• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 53
  • 42
  • 32
  • 14
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 513
  • 513
  • 91
  • 71
  • 70
  • 68
  • 63
  • 53
  • 52
  • 49
  • 45
  • 44
  • 44
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

The Design of a Biodegradable Stent for Arteriovenous Fistula Maturation and a Carbon Nanotube Membrane for Water Filtration

Xu, Chenhao 23 August 2022 (has links)
No description available.
122

Processing and Characterization of Multifunctional Thermoplastic Nanocomposite Films

Wang, Xin 01 January 2014 (has links)
Nanoparticles reinforced polymer composite films have been widely studied for their enhanced mechanical, electrical and thermal properties compared with host polymer matrix. However, most research was conducted on incorporation of nanoparticles in polymer films to improve single property and there is a lack of research on the multifunctional polymer nanocomposite films. In this work, a scalable and continuous spray deposition process was developed for the production of nanoparticles reinforced multifunctional thermoplastic nanocomposite films. This process is capable of making a thin sheet of thermoplastic nanocomposites with high nanoparticle loadings. The smallest thickness can be 40um. The objective of this study is to design and optimize the thermoplastic nanocomposite films by utilizing nanoclay and helical carbon nanotube for multifunctional application: a) high electrical conductivity and thermal stability. Helical carbon nanotube paper based thermoplastic polyurethane nanocomposite films have been studied. The electrical conductivity and thermal stability of nanocomposite films increase a lot due to the incorporation of helical carbon nanotube paper with high electrical and thermal conductivity. The peculiar helical configuration of carbon nanotubes could greatly improve the interfacial bonding between carbon nanotubes and polymer matrix. b)High wear resistance and thermal stability. A nanoclay reinforced thermoplastic polyurethane nanocomposite coating was applied on the surface of leather. Due to the high hardness and thermal stability of nanoclay, the leather coated with nanocomposite film showed an improvement of wear resistance and thermal stability.
123

Towards Understanding the lntertwinement between Chemical Modification and Electronic Properties of Single-Wall Carbon Nanotubes

Moonoosawmy, Kevin Radakishna 04 1900 (has links)
Single Wall Carbon Nanotubes (SWCNTs) are often synthesized as bundles and are chemically modified via either covalent or non-covalent approaches to prevent aggregation, improve their dispersability and tune their physical properties for a potential application. The spatial distribution and effect of covalent addends on the electronic properties of SWCNTs was characterized using a Scanning Tunneling Microscope but with limited success. The effect of sample preparation was questioned as it often involves sonicating the SWCNTs in either an organic or an aqueous medium. Sonication of SWCNTs in certain common solvents was found to alter their electronic properties. The solvent molecules are broken down via a radical pathway during sonicating leading to the formation of new species that interact with the SWCNTs and in some cases with the catalytic material present. New species such as iron chlorides and oxygen, which were formed for example in o-dichlorobenzene and water respectively, caused p-type doping. Doping was characterized by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). A blue shift in the D* mode along with a shift to lower binding energy in the C1s peak was observed from Raman spectroscopy and XPS respectively. The reactivity of the radicals (formed during sonication) towards the structure of the SWCNTs was also investigated. Radicals formed during sonication of certain chlorinated aromatic solvents lead to the formation of sonochemical polymers, which interacted heavily with the SWCNTs. These interactions, which can be the source of features commonly associated with covalent functionalization, were thwarted by a washing protocol and were found to be non-covalent in nature. The observations are of relevance towards understanding an inadvertent chemical modification during chemical processing, which can impact reproducibility of results that involve wet-chemical processes. However, with such knowledge of the chemistry involved during sample preparation the occurrence of doping can be either circumvented or appropriately used. / Thesis / Doctor of Philosophy (PhD)
124

Carbon Nanotube Thin Films as Flexible Substrates for the Support of Inorganic Nanostructures

Lawson, Gregor 06 1900 (has links)
<p>Carbon nanotubes (CNTs) are arguably the most widely studied material within the field of nanotechnology. The impressive physical and electronic properties of these materials have led to their investigation in a diverse range of applications. In recent years, the deposition of inorganic nanoparticles upon the surface of CNTs has received much attention. Research within this field has been driven by the desire to develop new composite materials exhibiting novel electronic, optical, and catalytic properties. In addition to the decoration of individual nanotubes, several groups have also investigated the use of CNT thin films as scaffolds for the assembly of inorganic nanostructures as well as other secondary components, including polymers and biomaterials. Nanotube films exhibit a number of physical properties that make them suitable for such applications, displaying impressive electrical conductivity, flexibility, and thermal stability while also possessing a high surface area upon which chemical modification can be conducted.</p><p>This thesis presents work that demonstrates the potential of CNT thin films as flexible conductive scaffolds for the support of a variety of inorganic nanostructures. Procedures are described for the preparation of SWNT -Au nanoparticle composite films that, as subsequently demonstrated, are suitable substrates for the growth of III-V semiconductor nanowires using gas-source molecular beam epitaxy. At the time of writing, the majority of published research within this field focused upon the preparation of SWNT composite films containing spherical metallic or semiconductor nanoparticles. In contrast, the growth of semiconductor nanowires upon nanotube thin films had not been explored. The work described in this thesis therefore represents the development of a novel composite material that combines the flexibility of CNT films with the unique optoeletronic properties exhibited by semiconductor nanowires. The development of functional electronic devices incorporating these materials is also discussed, as is the extension of the methods developed to investigate novel composite materials that combine other inorganic nanostructures with carbon based substrates.</p> / Thesis / Doctor of Philosophy (PhD)
125

Experimental Characterization of Commercially Available Carbon Nanotube Fibre in a Stiffness-Variable Actuator Design

Dalrymple, Justin 04 July 2023 (has links)
The growing demand for compact and compliant mobility assistive devices has driven interest in low-profile actuating technologies. With the increasing mobility needs of an aging population, such devices could meet this growing market if they can provide low power capabilities, high strength, and compatibility with standard industrial fabrication processes. As a result, researchers have been investigating smart materials, such as carbon nanotube (CNT) and their higher-order structures, as potential components for soft actuator systems. However, reported works using this material within actuators have remained limited due to the material's prohibitive cost and fabrication complexity. Furthermore, presented actuator designs are difficult to compare due to custom fabrication procedures and inconsistent characterizations. The recent availability of commercial higher-order CNT products and the superior material consistency they provide present an opportunity to comprehensively analyze these materials in actuators without the challenges faced in previous work. This thesis addressed this opportunity by evaluating a stiffness-variable actuator design leveraging a commercially available CNT fibre. The evaluation focused on the effects on the mechanical and electrical properties in addition to its electrothermal and electromechanical responses when changing selected actuator design and operational parameters. The findings highlight the importance of optimal coating and embedded pre-stretch to achieve optimal contractile stress and contractile strain performance, while increased fibre diameter diminishes these properties. Furthermore, the usage of commercial CNT yarn ensured consistent mechanical and electrical properties during the fabrication and testing of actuator prototypes. This in-depth understanding of this actuator design's strengths, weaknesses, and the influence of selected operational and design parameters on performance establishes a foundation for future CNT-based actuator research within a repeatable framework.
126

Vibration Analysis Of Carbon Nanotube Using Continuum Model And Finite Element Model

Subramaniam, Hari 01 January 2005 (has links)
The main objective of the thesis is to propose the methods of determining vibration behavior of carbon nanotubes (CNTs) using continuum models and finite element models. Secondary objective is to find the effect of van der Waals force on vibration of multiwalled carbon nanotubes . The study of vibration behavior of CNTs is important because of their potential engineering applications such as nano-mechanical resonators and tips of scanning probe instruments where they are subjected to mechanical vibrations. Continuum modeling is based on an elastic beam model. The interlayer van der Waals interactions are represented by Lennard-Jones potential. In finite element modeling, single walled nanotubes (SWNTs) are modeled as finite beam elements and multi-walled nanotubes (MWNTs) as finite solid elements. The interlayer van der Waals interactions are simulated by distributed springs. The proposed finite element approach and continuum approach for vibration analysis of CNTs are verified by comparing the results with experimental and analytical results available in the literature. The results from both continuum and finite element modeling show that the effect of van der Waals force on vibration of MWNTs are high for smaller aspect ratios irrespective of boundary conditions and number of layers; fixed nanotube than cantilever nanotube for the same dimensions ; five-walled nanotube than a double walled nanotube for the same aspect ratio.
127

Asymmetric Capacitor Based on Vanadium Dioxide/Graphene/Nickle and Carbon Nanotube Electrode

Xiao, Wanyao 10 June 2014 (has links)
No description available.
128

Multiphysics Gas Phase Pyrolysis Synthesis of Carbon Nanotube Yarn and Sheet

Hou, Guangfeng 26 May 2017 (has links)
No description available.
129

Extraordinary Optical Transmission in Aligned Carbon Nanotube Devices at Terahertz Frequencies.

Almousa, Shaikhah F. 09 May 2017 (has links)
No description available.
130

Multiscale Modeling of Carbon Nanotube Synthesis in a Catalytic Chemical Vapor Deposition Reactor

Troville, Jonathan 28 June 2017 (has links)
No description available.

Page generated in 0.028 seconds