• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 53
  • 42
  • 32
  • 14
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 513
  • 513
  • 91
  • 71
  • 70
  • 68
  • 63
  • 53
  • 52
  • 49
  • 45
  • 44
  • 44
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

EFFICIENT ELECTROCHEMICAL FUNCTIONALIZATION OF CARBON NANOTUBES AND CARBON NANOTUBE MEMBRANES FOR ENERGY, DRUG DELIVERY AND POTENTIAL CATALYSIS APPLICATIONS

Zhan, Xin 01 January 2013 (has links)
Electrochemical diazonium grafting offers versatile functionalization of chemically inert graphite under mild condition, which is particularly suitable for CNT composite modification. Tetrafluorinated carboxylphenyl diazonium grafting provides the most controllable functionalization chemistry allowing near monolayer levels of functionality on carbon nanotubes. The functional density was successfully quantified by anion selective dye-assay and X-ray photoelectron spectroscopy (XPS) of thiol-Au self-assembled monolayers (SAM) as a calibration reference. This technique enables monolayer functionality at the tips of carbon nanotube membranes for biomimetic pumps and valves as well as thin conductive layers for CNT-based high area electrochemical support electrodes. Double-walled carbon nanotube (DWCNT) membranes were functionalized with sterically bulky dye molecules with amine termination in a single step functionalization process. Non-faradic (EIS) spectra indicated that the functionalized gatekeeper by single-step modification can be actuated to mimic protein channel under bias. This functional chemistry on membranes resulted in rectification factors of up to 14.4 with potassium ferricyanide in trans-membrane electrochemical measurements. One step functionalization by electrooxidation of amines provides simple and promising functionalization chemistry for the application of CNT membranes. Carbon nanotubes (CNTs) are considered a promising catalyst support due to high surface area, conductivity and stability. But very few cases of asymmetric catalysis have been reported using CNTs as support. Three noncovalent functionalization approaches have been carried out to immobilize Rh-Josiphos complex on CNTs for asymmetric hydrogenation of dimethyl itaconate. Coordinated Rh catalyst on CNTs exhibited excellent activity and reuse ability even after seventh run in hydrogenation but no enantiomeric excess as expected for lacking a chiral directing ligand. The catalyst using pyrene absorption gave 100% yield and excellent enantiomer excess (>90%) but suffered from leaching into solution. The phosphotungstic acid (PTA) anchored catalyst gave 100% yield and higher ee (99%) and better reusability over pyrene absorbed catalyst but had significant leaching after the second run. At this point it remains a significant challenge to utilize CNTs as a chiral catalyst support.
142

Enhancement of the Properties of Polymer by using Carbon Nanotubes

Tam, Wai-Yin 20 December 2009 (has links)
The outstanding properties of carbon nanotubes (CNTs) have stimulated a large number of researches to explore the potential of using them as reinforcement in polymer composites. Although many studies have reported the enlighten improvement of the materials properties by using CNTs as reinforcement, there are no promising and optimal results have been concluded to date. This thesis aims at studying the mechanical properties on thermoset polymer, Epoxy, by employing a small amount of carbon nanotubes as reinforcement. Two different types of nanotube-based composites are prepared i.e. a raw single-walled carbon nanotube (SWNT) composites and a functionalized single-walled carbon nanotube (FSWNT) composite. Chemical functionalization on SWNTs with carboxyl functional group (COOH) aims at modifying the end caps of nanotubes, so to provide covalent bonding of SWNTs to the polymer matrix during manufacturing of composite systems. Different weight percentages (wt %) of each type of SWNTs are added into the composite system. Standard test methods are performed on these nanotube composite systems and satisfactory results were achieved when the weight percentages of both types of SWNTs increased. Through the comparison between two systems (raw SWNTs and FSWNTs), the FSWNT reinforced composite is found to provide a better improvement on the mechanical properties as compared with the SWNT reinforced system. The integrity of both composite systems is examined by using Scanning Electronic Microscopy (SEM). The SEM images of the composites indicated the derivation in wetting and bonding between the nanotubes (both SWNTs and FSWNTs) and epoxy resin, and the FSWNTs provide an eminent dispersion when compared with the SWNTs in the composite system. Moreover, thermal testings are employed to further investigate the interfacial interaction between the nanotubes and the polymer matrix. xiv Molecular Dynamics (MD) simulations are also carried out to investigate the structural change of a SWNT under different temperature-controlled manufacturing environments. Swivel of the SWNT was noticed as the temperature increased. Such alteration in structure form can provide physical interlocking between SWNT and its surrounding polymer system. Thus, its overall mechanical and thermal properties can be enhanced.
143

In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits

Dolati, Farzaneh 01 December 2014 (has links)
Vascularization of thick engineered tissue and organ constructs like the heart, liver, pancreas or kidney remains a major challenge in tissue engineering. Vascularization is needed to supply oxygen and nutrients and remove waste in living tissues and organs through a network that should possess high perfusion ability and significant mechanical strength and elasticity. In this thesis, we introduce a fabrication process to print vascular conduits directly, where conduits were reinforced with carbon nanotubes (CNTs) to enhance their mechanical properties and bioprintability. The generation of vascular conduit with a natural polymer hydrogel such as alginate needs to have improved mechanical properties in order to biomimic the natural vascular system. Carbon nanotube (CNT) is one of the best candidates for this goal because it is known as the strongest material and possesses a simple structure. In this thesis, multi-wall carbon nanotube (MWCNT) is dispersed homogenously in the hydrogel and fabricated through an extrusion-based system.In vitro evaluation of printed conduits encapsulated in human coronary artery smooth muscle cells was performed to characterize the effects of CNT reinforcement on the mechanical, perfusion and biological performance of the conduits. Perfusion and permeability, cell viability, extracellular matrix formation and tissue histology were assessed and discussed, and it was concluded that CNT-reinforced vascular conduits provided a foundation for mechanically appealing constructs where CNTs could be replaced with natural protein nanofibers for further integration of these conduits in large-scale tissue fabrication. It was concluded that MWCNT has a significant effect on mechanical properties, vascular conduit swelling ratio and biological characterization in short-term and long-term cellular viability.
144

Carbon nanotube thin film transistor on flexible substrate and its applications as switches in a phase shifter for a flexible phased-array antenna

Pham, Daniel Thanh Khac 07 February 2011 (has links)
In this dissertation, a carbon nanotube thin-film transistor is fabricated on a flexible substrate. Combined printing and stamping techniques are used for the fabrication. An ink-jet printing technique is used to form the gate, source, and drain electrodes as well as the dielectric layer. A self aligned carbon nanotube (CNT) thin film is formed by using a new modified dip coat technique before being transferred to the device substrate. This novel modified dip-coat technique utilizes the capillary effect of a liquid solution rising between gaps to coat CNT solution on a large area of the substrate while consuming minimal CNT solution. Several key solutions are addressed to solve the fabrication problems. (1) The source/drain contact with the CNT channel is developed by using droplets of silver ink printed on the source/drain areas prior to applying CNT thin. The wet silver ink droplets allow the silver to "wet" the CNT thin-film area and enable good contact with the source and drain contact after annealing. (2) A passivation layer to protect the device channel is developed by bonding a thin Kapton film on top of the device channel. This thin Kapton film is also used as the media for transferring the aligned CNT thin-film on the device substrate. Using this technique, printing the passivation layer can be avoided, and it prevents the inter-diffusion of the liquid dielectric into the CNT porous thin-film. (3) A simple and cost effective technique to form multilayer metal interconnections on flexible substrate is developed and demonstrated. Contact vias are formed on the second substrate prior bonding on the first substrate. Ink-jet printing is used to fill the silver ink into the via structure. The printed silver ink penetrates through the vias to contact with the contact pads on the on the bottom layer, followed by an anneal process. High drain current of 0.476mA was obtained when V[subscript G]= -3V and source-drain voltage (V[subscript DS]) was -1.5V. A bending test was performed on the CNT TFT showing less than a 10% variation in performance. A bending test was also performed on via structures, which yielded less than a 5% change in resistance. The developed CNT TFT is used to form a switch in a phase shifter for a flexible phased-array antenna (PAA). Four element 1-dimensional and 2-dimensional phased-array antennae are fabricated and characterized. Multilayer metal interconnects were used to make a complete PAA system. For a 2-bit 1x4 PAA system, by controlling the ON/OFF states of the transistors, beam steering of a 5.3GHz signal from 0° to -27° has been demonstrated. The antenna system also shows good stability and tolerance under different bending radii of curvature. A 2-bit 2x2 PAA system was also fabricated and demonstrated. Two dimensional beam steering of a 5.2GHz signal at an angle of [theta]=20.7° and [phi]=45° has been demonstrated. The total efficiency of the 1-dimensional and 2-dimensional PAA systems are 42% and 46%, respectively. / text
145

Characterization and Application of Dynamic in vitro Models of Human Airway

Patel, Hemangkumar J. 01 May 2011 (has links)
In recent years, respiratory diseases have emerged as a leading cause of mortality across the globe. In the United States alone respiratory diseases are the fourth leading cause of deaths annually. Moreover, with the rapid increase of industrialization and urbanization, the occurrences of respiratory diseases are expected to remain high with strong chances of increasing in the future. To ameliorate the epidemic of respiratory disease, it is first important to understand its underlying mechanisms. Respiratory research studies in animals have elucidated the chronological order of the pathological events and systemic responses inside the lung, but understanding the response of individual cell types inside the lung is necessary to outline the initiators and mediators of the pathological events. Many research studies have aimed to understand the behavior of individual cell types, from the lung, under different pathological conditions specific to the respiratory system. However, the cell culture systems used in most of these studies were limited by the absence of the dynamic cell growth environment present in actual lung tissues. The lung exists in a mechanically active environment, where different amounts of circumferential and longitudinal expansion and contraction occur during breathing movements. Thus, simulating the biomechanical environment in in vitro cell culture models may improve the cellular functionality and the outcome of the research studies. Moreover, the stimulation of biomechanical forces in in vitro cell cultures provides the advantage of mimicking the mechanical environment, related to different pathological conditions. In our study we used a dynamic in vitro cell culture system capable of implementing cyclic equibiaxial deformation in cell monolayers to stimulate different biomechanical environments similar to conditions inside the lung. The dynamic cell growth condition was used to determine the effects of ventilator-induced lung injury and nano-material/pollutant exposure in A549 cell cultures. Examples of such pollutants are diesel particulate matter, multi-walled carbon nanotubes, and single-walled carbon nanotubes. Our results indicated that the dynamic cell growth condition specific to ventilator induced lung injury facilitated an increase in inflammatory and tissue remodeling activities in A549 cells. Under the nano-material/pollutant exposure assessment studies, the dynamic cell growth condition induced changes in inflammation and oxidative stress level which closely resembled those in in vivo studies.
146

Carbon Nanotube Sheet Synthesis and Applications Based on the Floating Catalyst Chemical Vapor Deposition System

Chen, Rui 22 August 2022 (has links)
No description available.
147

Numerical Modeling and Characterization of Vertically Aligned Carbon Nanotube Arrays

Joseph, Johnson 01 January 2013 (has links)
Since their discoveries, carbon nanotubes have been widely studied, but mostly in the forms of 1D individual carbon nanotube (CNT). From practical application point of view, it is highly desirable to produce carbon nanotubes in large scales. This has resulted in a new class of carbon nanotube material, called the vertically aligned carbon nanotube arrays (VA-CNTs). To date, our ability to design and model this complex material is still limited. The classical molecular mechanics methods used to model individual CNTs are not applicable to the modeling of VA-CNT structures due to the significant computational efforts required. This research is to develop efficient structural mechanics approaches to design, model and characterize the mechanical responses of the VA-CNTs. The structural beam and shell mechanics are generally applicable to the well aligned VA-CNTs prepared by template synthesis while the structural solid elements are more applicable to much complex, super-long VA-CNTs from template-free synthesis. VA-CNTs are also highly “tunable” from the structure standpoint. The architectures and geometric parameters of the VA-CNTs have been thoroughly examined, including tube configuration, tube diameter, tube height, nanotube array density, tube distribution pattern, among many other factors. Overall, the structural mechanics approaches are simple and robust methods for design and characterization of these novel carbon nanomaterials
148

Physics Based Analytical Thermal Conductivity Model For Metallic Single Walled Carbon Nanotube

Rex, A 06 1900 (has links) (PDF)
Single-Walled Carbon Nanotube (SWCNT) based Very Large Scale Integrated circuit (VLSI) interconnect is one of the emerging technologies, and has the potential to overcome the thermal issues persisting even with the advanced copper based interconnect. This is because of it’s promising electrical and thermal transport properties. It can be stated that thermal energy transport in SWCNTs is highly anisotropic due to the quasi one dimensionality, and like in other allotropes of carbon, phonons are the dominant energy carriers of heat conduction. In case of conventional interconnect materials, copper and aluminium, although their thermal conductivity varies over orders of magnitude at temperatures below100 K, near room temperature and above they have almost constant value. On the other hand, the reported experimental studies on suspended metallic SWCNTs illustrate a wide variation of the longitudinal lattice thermal conductivity (κl) with respect to the temperature(T)and the tube length(L)at low, room and high temperatures. Physics based analytical formulation of κl of metallic SWCNT as a function of L and T is essential to efficiently quantify this emerging technology’s impact on the rising thermal management issues of Integrated Circuits. In this work, a physics based diameter independent analytical model for κl of metallic SWCNT is addressed as a function of Lover a wide range of T. Heat conduction in metallic SWCNTs is governed by three resistive phonon scattering processes; second order three phonon Umklapp scattering, mass difference scattering and boundary scattering. For this study, all the above processes are considered, and the effective mode dependent relaxation time is determined by the Matthiessen’s rule. Phonon Boltzmann transport equation under the single mode relaxation time approximation is employed to derive the non-equilibrium distribution function. The heat flux as a function of temperature gradient is obtained from this non-equilibrium distribution function. Based on the Fourier’s definition of thermal conductivity, κl of metallic SWCNT is formulated and the Debye approximations are used to arrive at analytical model. The model developed is validated against both the low and high temperature experimental investigations. At low temperatures, thermal resistance of metallic SWCNT is due to phonon-boundary scattering process, while at high temperatures it is governed by three phonon Umklapp scattering process. It is understood that apart from form factor due to mass difference scattering, boundary scattering also plays the key role in determining the peak value. At room temperature, κl of metallic SWCNT is found to be an order of magnitude higher than that of most of metals. The reason can be attributed to the fact that both sound velocity and Debye temperature which have direct effect on the phonon transport in a solid, are reasonably higher in SWCNTs. Though Umk lapp processes reduce the κl steeper than 1/T beyond room-temperature, it’s magnitude is round1000 W/m/K upto 800 K for various tube lengths, which confirms that this novel material is indeed an efficient conductor of heat also, at room-temperature and above.
149

Spectroscopic and technological studies of carbon-nanotube-based structures for photonics applications / Etudes spectroscopiques et technologiques de structures à base de nanotube de carbone pour les applications de la photonique

Gu, Qingyuan 08 April 2015 (has links)
Cette thèse est consacrée à l’étude du dépôt uniforme et de l’alignement à haute densité en nanotubes de carbone monoparois (NTCMP) sur différents substrats, à l’analyse qualitative des propriétés optiques excitoniques et aux modes de vibration des échantillons à NTCMP, et à la fabrication de guides d’onde optiques à base de NTCMP, en vue de composants photoniques pour les télécoms, autour de 1550 nm. Deux types de NTCMP ont été étudiés durant cette thèse : des NTCMP « HiPCO » (« high pressure carbon monoxide ») issus de la décomposition du monoxyde de carbone à haute pression, et des NTCMP « LV » (« laser vaporization ») provenant de l’ablation laser d’une cible en graphite. Plusieurs méthodes de dépôt de ces NTCMP ont été développées, telles que la méthode de dépôt assistée-par-tube, la méthode de dépôt en sillon, la méthode par pulvérisation, la méthode par centrifugation à grande vitesse, la méthode optimisée par centrifugation à vitesse réduite (MOCVR) et la méthode à jet d’encre. La qualité, l’épaisseur et l’uniformité des films de NTCMP sont caractérisées par observations au microscope électronique à balayage (MEB). Il est montré ici que l’uniformité des films à base de NTCMP HiPCO dépend fortement de la concentration en surfactants de la dispersion à base de NTCMP déposée. Des films uniformes de NTCMP LV ont été obtenus par la MOCVR et leur épaisseur couvre une gamme de 600nm à 900nm (avec une erreur <10%), qui dépend de la nature du substrat. L’alignement par diélectrophorèse (DEP) de NTCMP HiPCO et LV a été développé et optimisé. Ainsi, une nouvelle méthode (DEP « assistée-parchauffage ») est proposée afin d’obtenir un alignement à très haute densité en NTCMP. Cette méthode d’alignement par DEP assistée-par-chauffage a fait l’objet de travaux de simulation pour comprendre l’effet de la température. Les propriétés optiques excitoniques et les modes de vibration des NTCMP en solution et en film sur substrat ont été caractérisés par spectroscopies d’absorption, de photoluminescence (PL), d’excitation de la PL et Raman. Les niveaux de défauts et d’isolement des NTCMP HiPCO, les distributions en diamètre et en chiralité, les cartographies de l’uniformité et de l’épaisseur des films à base de NTCMP, et l’effet du laser à forte puissance, ont été qualitativement étudiés par spectroscopie Raman. Le rendement quantique interne en PL de NTCMP HiPCO en film est estimée à une valeur de 5%. Le transfert d’exciton entre NTCMP HiPCO individualisés, le rôle du polymère environnant sur les propriétés excitoniques des NTCMP LV, et les excitons sombres sont discutés dans cette thèse. Le design et la fabrication de guides optiques hybrides à une dimension, contenant une ou trois couches de NTCMP HiPCO, et de guides optiques à deux dimensions à base de NTCMP LV ont été menés. Les étapes de fabrication des guides optiques sont ici examinées en détails. La propagation à 1550nm de ces guides d’onde à base de NTCMP est observée. La propagation de la lumière dans les guides d’onde à base de NTCMP LV est une caractéristique préliminaire pour toute cavité optique et confère un fort potentiel aux NTCMP LV pour les composants photoniques de la future génération. / This thesis concentrates on the uniform deposition and highdensity alignment of single-walled carbon nanotubes (SWCNTs) on various substrates, the qualitative analysis of optical and excitonic properties, as well as vibrational modes of SWCNTbased samples by absorption, photoluminescence (PL) and Raman spectroscopies, and the fabrication of SWCNT-based optical waveguides towards photonics devices in the 1.55μm telecom window. Two types of SWCNT were studied during this thesis: “HiPCO” SWCNT from high pressure carbon monoxide conversion process (HiPCO) and “LV” SWCNT from catalytic growth of SWCNT assisted by laser vaporization (LV) of graphite. Several methods for the deposition of these SWCNTs were investigated and performed, including tube-assisted deposition method, groove deposition method, spraying method, high-speed spin coating method, improved low-speed spin coating method (ILSSCM) and inkjet printing method. The quality, thickness and uniformity of SWCNT films are characterized by scanning electron microscopy (SEM). The uniformity of HiPCO SWCNT-based film is shown to depend strongly on the surfactants concentration in deposited SWCNTbased dispersion. Uniform LV SWCNTbased films using ILSSCM were obtained with thicknesses ranging from 600nm to 900nm (with thickness error <10%), depending on substrates nature. Alignment of HiPCO and LV- SWCNTs using a dielectrophoresis method, combining microtechnological processes and SEM observations, is investigated and optimized. Thus, a new method (“heating-enhanced DEP”) for ultra-high alignment density of HiPCO SWCNTs is proposed. The effect of temperature in this heating-enhanced DEP process is further explained by simulation works. Optical and excitonic properties, vibrational modes of SWCNT solutions and films are characterized by absorption, PL and PL excitation, Raman spectroscopies. The defects and the isolation levels of HiPCO SWCNT, the chirality- and diameterdistributions of SWCNT, the uniformity and the thickness mapping of SWCNT-based films, and the effect of high energy laser are qualitatively analyzed by Raman spectra. We estimated the PL quantum efficiency value of HiPCO SWCNT film of around 5%. The exciton energy transfer between individualized HiPCO SWCNTs, the role of polymer environment on excitonic properties of LV SWCNTs, and the dark excitons are discussed in this thesis. One-layer and three-layers of HiPCO SWCNT-based onedimensional slab optical waveguides of hybrid core structures, and LV SWCNT-based twodimensional optical waveguides are designed and fabricated. The fabrication process steps of the optical waveguides are investigated in details. 1.55μm propagation in these SWCNT-based waveguides is highlighted. Single- or multi-mode emissions around 1.5μm and 1.6μm are observed in LV SWCNTbased optical waveguides. The light propagation in the LV SWCNT-based optical waveguide is the preliminary characteristic of an optical cavity, which confers great potential for future generation LV SWCNT-based photonics devices.
150

Fabrication and analysis of carbon nanotube based emitters

Mancevski, Vladimir 28 October 2011 (has links)
We have advanced the state-of-the-art for nano-fabrication of carbon nanotube (CNT) based field emission devices, and have conducted experimental and theoretical investigations to better understand the reasons for the high reduced brightness achieved. We have demonstrated that once the CNT emitter failure modes are better understood and resolved, such CNT emitters can easily reach reduced brightness on the order of 10⁹ A m⁻² sr⁻¹ V⁻¹ and noise levels of about 1%. These results are about 10% better than the best brightness results from a nanotip emitter archived to date. Our CNT emitters have order of magnitude better reduced brightness than state-of-the-art commercial Schottky emitters. Our analytical models of field emission matched our experimental results well. The CNT emitter was utilized in a modified commercial scanning electron microscope (SEM) and briefly operated to image a sample. We also report a successful emission from a lateral CNT emitter element having a single suspended CNT, where the electron emission is from the CNT sidewall. The lateral CNT emitters have reduced brightness on the order of 10⁸ A m⁻² sr⁻¹ V⁻¹, about 10X less than the vertical CNT emitters we fabricated and analyzed. The characteristics of the lateral field emitter were analyzed for manually fabricated and directly grown CNT emitters. There was no significant difference in performance based on the way the CNT emitter was fabricated. We showed that the fabrication technique for making a single CNT emitter element can be scaled to an array of elements, with potential density of 10⁶-10⁷ CNT emitters per cm². We also report a new localized, site selective technique for editing carbon nanotubes using water vapor and a focused electron beam. We have demonstrated the use of this technique to cut CNTs to length with 10s of nanometers precision and to etch selected areas from CNTs with 10s of nanometers precision. The use of this technique was demonstrated by editing a lateral CNT emitter. We have conducted investigations to demonstrate the effects of higher local water pressure on the CNT etching efficiency. This was achieved by developing a new method of localized gas delivery with a nano-manipulator. / text

Page generated in 0.179 seconds