71 |
Diferenciação entre microRNAs expressos na hipertrofia cardíaca fisiológica e patológicaMartinelli, Nidiane Carla January 2016 (has links)
A hipertrofia cardíaca é uma adaptação do coração frente a estímulos de crescimento, sejam eles patológicos e irreversíveis como a sobrecarga de pressão ou de volume, ou fisiológicos e reversíveis como a gravidez e o exercício físico. A hipertrofia derivada de estímulos patológicos é conhecida como mal adaptativa enquanto que a hipertrofia proveniente de estímulos ditos fisiológicos é conhecida como benéfica ou adaptativa. Embora ambas hipertrofias tenham fatores em comum no que diz respeito ao crescimento do cardiomiócito e adaptações moleculares, elas acabam divergindo para desfechos completamente diferentes. A hipertrofia patológica evolui para um quadro de disfunção cardíaca ao passo que a hipertrofia fisiológica não acarreta nenhum dano funcional ao miocárdio. Essa linha tênue entre um fenótipo e outro envolve mecanismos celulares complexos que ainda precisam ser esclarecidos. Dentro deste cenário, os microRNAs aparecem como reguladores de diversos processos celulares, e têm sido associados ao crescimento miocárdico. Portanto, nosso objetivo foi comparar o padrão de expressão de microRNAs entre os modelos de hipertrofia fisiológica, induzido por natação (SWIM), e o modelo de hipertrofia patológica, induzida por bandeamento aórtico transtorácico (TAC). As análises foram realizadas após 28 dias para o modelo de natação, e 35 dias para o modelo de TAC. A comparação foi realizada através da técnica de microarranjo de microRNAs (Affymetrix). Interessantemente, apenas 20 microRNAs apresentaram níveis de expressão distinta entre os dois modelos de hipertrofia. Destes, 12 microRNAs apresentaram aumento de expressão (miR-193a-3p, miR-299a-5p, miR- 127-5p, miR-214-5p, miR-188-5p, miR-326-3p, miR-6395, miR-547-3p, miR-199a-5p, miR-381-3p, miR-223-3p e miR-199b-5p) e 8 estavam com seus níveis diminuídos (miR11 708-5p, miR-30c-1-3p, miR-22-5p, miR-6921-5p, miR-30a-3p, miR-30e-3p, miR-27a-5p and miR-6975-5p) no grupo TAC em relação ao grupo SWIM. Além disso, apenas 3 microRNAs, miR-21a-5p, miR-206-3p e miR-1983, apresentaram aumento de expressão tanto no grupo TAC quanto no grupo SWIM em comparação aos grupos SHAM e Sedentário, respectivamente. Após isso, foi realizada uma busca por possíveis alvos destes microRNAs na base de dados KEGG Pathway que identificou 4 rotas enriquecidas (665 genes) entre os alvos dos microRNAs reduzidos, e 80 rotas (3394 genes) fortemente associadas aos microRNAs que estavam aumentados no grupo TAC comparado ao SWIM. Conclui-se que existem microRNAs específicos para o desenvolvimento da hipertrofia cardíaca fisiológica, bem como patológica conforme os dados obtidos na análise de microarranjo. Além disso, os possíveis alvos destes microRNAs parecem estar envolvidos em rotas bastante envolvidas no crescimento celular, sobrevivência e adaptação cardíaca. / Cardiac hypertrophy is a heart adaptation in response to growth stimuli whether pathological and irreversible such as pressure overload or physiological and reversible as pregnancy and exercise. Hypertrophy because of pathological stimuli is known as mal adaptive while the one that comes from physiological triggers is known as beneficial or adaptive. Although both have similarities about cardiomyocyte growth and molecular adaptations, they diverge to distinct outcomes. The pathological hypertrophy evolves to a pattern of cardiac dysfunction while the physiological one does not cause any damage to the heart. This tenuous line between those phenotypes involves complex cellular mechanisms that need to be clarified. In this context, microRNAs are considered as regulators of many biological processes, and have been associated to myocardial growth. Therefore, our aim was to compare microRNA expression between physiological (swiminduced) and pathological (TAC-induced) hypertrophy. The analysis was performed after 28 days for SWIM protocol and 35 days for TAC model. The comparison was done using microRNA microarray technology (Affymetrix). Interestingly, only 20 microRNAs were differential expressed between both models. Out of those, 12 were up regulated (miR- 193a-3p, miR-299a-5p, miR-127-5p, miR-214-5p, miR-188-5p, miR-326-3p, miR-6395, miR-547-3p, miR-199a-5p, miR-381-3p, miR-223-3p and miR-199b-5p) while 8 were down regulated in TAC group compared to SWIM group. Besides, only 3 microRNAs, miR-21a-5p, miR-206-3p and miR-1983, were upregulated in TAC and SWIM model compared to SHAM and SED groups. After that, a search at KEGG Pathway database retrieved 4 pathways (665 genes) enriched with targets from microRNAs downregulated and 80 pathways (3394 genes) enriched with targets from up-regulated microRNAs in in 13 TAC group compared to SWIM group. In conclusion, there are microRNAs specific committed to the physiological cardiac hypertrophy development as well to the pathological cardiac growth as observed in our microarray data. Furthermore, the possible targets of those microRNAs could be involved in pathways associated with cellular growth, survival and cardiac adaptation.
|
72 |
Hipertrofia cardíaca fisiológica e patológica : diferenças morfológicas e moleculares moduladas pela suplementação de vitamina ECohen, Carolina Rodrigues January 2015 (has links)
A hipertrofia cardíaca é um mecanismo de adaptação do coração ao aumento de demanda. De acordo com o estímulo, fisiológico ou patológico, a hipertrofia apresenta diferentes características morfológicas e moleculares. Compreender os mecanismos comuns e distintos entre os dois tipos de hipertrofia é um passo importante para o desenvolvimento de estratégias de prevenção e tratamento da IC. Dentre os mecanismos distintos cabe ressaltar a participação das espécies reativas do oxigênio (EROs) que parecem estar presentes em altos níveis na hipertrofia cardíaca patológica e em baixos na fisiológica. Além disso, o papel regulatório dos microRNAs (miRs) tem sido demonstrado nas doenças cardiovasculares. No entanto, a influência das EROs no desenvolvimento da hipertrofia e nas adaptações decorrentes a ela ainda não está estabelecido. Assim, nosso objetivo foi avaliar as diferenças morfológicas e moleculares da hipertrofia cardíaca fisiológica, induzida pelo exercício, e da patológica, induzida por bandeamento aórtico (TAC), e sua modulação pela vitamina E. Os modelos de exercício e TAC desenvolveram hipertrofia cardíaca de forma compatível com o estímulo recebido. Essas adaptações ocorreram conjuntamente com alterações na expressão dos miRs-21, -26b, -150, -210 e -499. A vitamina E inibiu o estímulo angiogênicos, no modelo fisiológico, assim como a expressão dos miRs-21, -150 e -210. No entanto, esses efeitos não alteraram o fenótipo final da hipertrofia cardíaca fisiológica. No modelo patológico, por outro lado, a vitamina E reduziu a fibrose e o dano oxidativo, além de alterar a expressão de miRs já descritos no desenvolvimento da hipertrofia cardíaca patológica. Novamente, esse efeito não foi suficiente para reduzir a hipertrofia cardíaca. Em conjunto, os dados desse estudo sugerem que a vitamina E e/ou sua capacidade antioxidante têm a capacidade de influenciar de forma benéfica a hipertrofia patológica; no entanto, seus efeitos podem ser desfavoráveis no estímulo fisiológico. / Cardiac hypertrophy is an adaptive mechanism of the heart to the increased demand. According to the stimulus, physiological or pathological, cardiac hypertrophy present different morphological and molecular features. Understanding both the unique and the shared features in each type of hypertrophy is an important step to the development of novel approaches in the HF management. Among the unique mechanisms, the participation of reactive oxygen species (ROS) seems to be present at high levels in pathological and at low levels in physiological cardiac hypertrophy. Furthermore, the regulatory role of microRNAs (miRs) have been shown in cardiovascular diseases. However, ROS influence in cardiac hypertrophy development and their adaptations were not established yet. Thus, our objective was to evaluate morphological and molecular differences between physiological cardiac hypertrophy (physical exerciceinduced) and pathological cardiac hypertrophy (transverse aortic constrictioninduced), and its modulation by vitamin E. Exercise and TAC models developed cardiac hypertrophy in a manner consistent with the received stimulus. These adaptations occurred along with changes in miR-21, -26b, -150, -210 and -499 expression. Vitamin E inhibited angiogenic adaptations, as well as miR-21, -150 and -210 expression in physiological model. However, these effects did not change the final physiological cardiac hypertrophy phenotype. On the other hand, in the pathological model, vitamin E reduced oxidative damage and fibrosis, and altered the expression of miRs described in pathological cardiac hypertrophy development. Again, this effect was not sufficient to reduce cardiac hypertrophy. In conclusion, vitamin E and/or its antioxidant capacity have the capacity to influence the pathological hypertrophy in a beneficial way, but its effects can be unfavorable in the physiological stimulus.
|
73 |
Hipertrofia cardíaca fisiológica e patológica : diferenças morfológicas e moleculares moduladas pela suplementação de vitamina ECohen, Carolina Rodrigues January 2015 (has links)
A hipertrofia cardíaca é um mecanismo de adaptação do coração ao aumento de demanda. De acordo com o estímulo, fisiológico ou patológico, a hipertrofia apresenta diferentes características morfológicas e moleculares. Compreender os mecanismos comuns e distintos entre os dois tipos de hipertrofia é um passo importante para o desenvolvimento de estratégias de prevenção e tratamento da IC. Dentre os mecanismos distintos cabe ressaltar a participação das espécies reativas do oxigênio (EROs) que parecem estar presentes em altos níveis na hipertrofia cardíaca patológica e em baixos na fisiológica. Além disso, o papel regulatório dos microRNAs (miRs) tem sido demonstrado nas doenças cardiovasculares. No entanto, a influência das EROs no desenvolvimento da hipertrofia e nas adaptações decorrentes a ela ainda não está estabelecido. Assim, nosso objetivo foi avaliar as diferenças morfológicas e moleculares da hipertrofia cardíaca fisiológica, induzida pelo exercício, e da patológica, induzida por bandeamento aórtico (TAC), e sua modulação pela vitamina E. Os modelos de exercício e TAC desenvolveram hipertrofia cardíaca de forma compatível com o estímulo recebido. Essas adaptações ocorreram conjuntamente com alterações na expressão dos miRs-21, -26b, -150, -210 e -499. A vitamina E inibiu o estímulo angiogênicos, no modelo fisiológico, assim como a expressão dos miRs-21, -150 e -210. No entanto, esses efeitos não alteraram o fenótipo final da hipertrofia cardíaca fisiológica. No modelo patológico, por outro lado, a vitamina E reduziu a fibrose e o dano oxidativo, além de alterar a expressão de miRs já descritos no desenvolvimento da hipertrofia cardíaca patológica. Novamente, esse efeito não foi suficiente para reduzir a hipertrofia cardíaca. Em conjunto, os dados desse estudo sugerem que a vitamina E e/ou sua capacidade antioxidante têm a capacidade de influenciar de forma benéfica a hipertrofia patológica; no entanto, seus efeitos podem ser desfavoráveis no estímulo fisiológico. / Cardiac hypertrophy is an adaptive mechanism of the heart to the increased demand. According to the stimulus, physiological or pathological, cardiac hypertrophy present different morphological and molecular features. Understanding both the unique and the shared features in each type of hypertrophy is an important step to the development of novel approaches in the HF management. Among the unique mechanisms, the participation of reactive oxygen species (ROS) seems to be present at high levels in pathological and at low levels in physiological cardiac hypertrophy. Furthermore, the regulatory role of microRNAs (miRs) have been shown in cardiovascular diseases. However, ROS influence in cardiac hypertrophy development and their adaptations were not established yet. Thus, our objective was to evaluate morphological and molecular differences between physiological cardiac hypertrophy (physical exerciceinduced) and pathological cardiac hypertrophy (transverse aortic constrictioninduced), and its modulation by vitamin E. Exercise and TAC models developed cardiac hypertrophy in a manner consistent with the received stimulus. These adaptations occurred along with changes in miR-21, -26b, -150, -210 and -499 expression. Vitamin E inhibited angiogenic adaptations, as well as miR-21, -150 and -210 expression in physiological model. However, these effects did not change the final physiological cardiac hypertrophy phenotype. On the other hand, in the pathological model, vitamin E reduced oxidative damage and fibrosis, and altered the expression of miRs described in pathological cardiac hypertrophy development. Again, this effect was not sufficient to reduce cardiac hypertrophy. In conclusion, vitamin E and/or its antioxidant capacity have the capacity to influence the pathological hypertrophy in a beneficial way, but its effects can be unfavorable in the physiological stimulus.
|
74 |
Regulation des CREB-Koaktivators TORC durch β-adrenerge Signale in isolierten neonatalen Rattenkardiomyozyten / Regulation of the CREB coactivator TORC by β-adrenergic signals in isolated neonatal rat cardiomyocytesWichmann, Helen 27 March 2018 (has links)
No description available.
|
75 |
Rôle de la triadine dans le développement de l'insuffisance cardiaque / Role of triadin during heart failureMarck, Pauline 28 November 2014 (has links)
L’insuffisance cardiaque (IC) est une cause majeure de mortalité dans les pays industrialisés. Ce syndrome est le résultat de nombreuses maladies cardiaques qui induisent dans un premier temps un remodelage adaptatif du myocarde : l’hypertrophie du ventricule gauche (HVG). Dans le cœur, le calcium libéré à partir du réticulum sarcoplasmique (RS) est à l’origine de la contractilité. Ce mécanisme est contrôlé par un macro-complexe moléculaire, composé du récepteur de la ryanodine (RyR2), et de protéines stabilisatrices associées dont la junctine (JCN), la calséquestrine (CSQ2), et la triadine (Trd). Ces dernières années, des dysfonctionnements de ce complexe, par des relâchements aberrants de Ca2+ du RS (vu comme des fuites de Ca2+ hors du RS) ont été remarqué au cours de l’IC, conduisant à une HVG associée à une dysfonction contractile et à la survenue d’arythmies cardiaques létales. De très nombreuses études se sont intéressées aux protéines principales du RS, telles que RyR2 et CSQ2, mais peu de données sont disponibles sur le rôle de Trd, protéine considérée comme mineure en physiopathologie cardiaque. Afin d’étudier son rôle dans le cœur, notre travail s’est articulé autour de trois modèles de pathologie cardiaque : 1-une surcharge de pression par une sténose de l’aorte transverse (TAC), 2-une diffusion de catécholamines (isoprotérénol, Iso) par mini-pompe osmotique et 3-une IC chronique par un infarctus du myocarde (IM), chez des souris dont le gène de la triadine a été invalidé (KO Trd). En réponse à une TAC ou à l’ISO, les animaux développent une HVG plus importante que les souris WT. Suite à une TAC, cette HVG est supérieure et excentrique et s’accompagne d’une dysfonction cardiaque comparativement aux animaux sauvages. Suite à un IM, les souris KO Trd présentent une mortalité accrue post-chirurgie. L’accroissement de cette mortalité accrue résiderait dans l’augmentation significative d’arythmies ventriculaires sévères (tachycardies ventriculaires, TV) chez ces souris suite à une stimulation catécholaminergique, pouvant être la conséquence d’une augmentation des fuites de Ca2+ hors du RS. Nous avons également observé qu’en réponse à la TAC la réexpression du gène TRDN avec un adénovirus AAV9 dans notre modèle KO Trd permet le maintien de la fonction cardiaque et de prévenir le développement de l’HVG. Au final, ces travaux montrent que l’absence de la triadine accélère la transition vers l’IC en modulant à la fois l’HVG et la dysfonction contractile associée mais également la survenue d’arythmies ventriculaires létales. / Heart failure (HF) is a serious public health issue with a growing prevalence in industrialized countries. This syndrome results from several cardiac diseases which begin with an adaptative myocardial remodeling: left ventricular hypertrophy (LVH). In heart, contractility depends on calcium release from sarcoplasmic reticulum (SR). This release is controlled by a macro-molecular complex, composed by ryanodine receptor (RyR2) and its associated regulatory protein junctin (JCN), calsequestrin (CSQ2) and triadin (Trd). During the past years, alterations of this complex by disturbed calcium release outside SR (as « sparks ») was often observed during the development of HF, being associated with LVH, dysfunction and fatal ventricular arrhythmias. Most studies were focused on RyR2 and CSQ2 function but few data are available regarding the role of Trd, considered until now having minor role in cardiac physiopathology. To elucidate its role, we realized 3 cardiac pathological experimental models on mice with triadin gene invalidation (KO Trd): 1- a pressure overload with transversal aorta constriction (TAC) 2-a chronic infusion of catecholamines (Isoproterenol, Iso) with osmotic minipumps and 3- a chronic HF with myocardial infarction (MI). In response to TAC or Iso, KO mice developed a greater LVH compared to wild-type mice. Also, with TAC, KO mice show an eccentric LVH associated with a severe cardiac dysfunction, as compared to wild-type mice. After MI, we observed a greater mortality post-surgery in KO Trd mice. This prevalence may be due to increasing of severe ventricular arrhythmias (ventricular tachycardia, VT) after catecholaminergic stimulation. This observation could be a consequence of increasing number of « sparks », and thus an increased calcium release during diastole. More interestingly, delivery of TRDN gene using AAV9 in KO mice, prevent adverse remodeling and the associated cardiac dysfunction following 28 days TAC surgery. To conclude, this work shows that the lack of triadin accelerate the transition towards heart failure, acting on LVH , contractile dysfunction, and the occurrence of lethal ventricular arrhythmias.
|
76 |
Characterizing Rho Kinase Activity Using a Novel PET Tracer in Hypertrophied CardiomyocytesMoreau, Steven January 2012 (has links)
Cardiac hypertrophy is a compensatory response to increased work load or stress on the heart, but over time can lead to heart failure and death. The molecular mechanisms underlying this disease are still not completely understood, however the Rho/Rho kinase pathway has been shown to play a role. N-[11C]-methyl-hydroxyfasudil, a PET radiotracer, binds to active Rho kinase and could be a possible tracer for hypertrophy. Hypertrophy was induced in vitro using the β-adrenergic receptor agonist isoproterenol to evaluate optimal Rho kinase activity. Rho kinase activity data was correlated to N-[11C]-methyl-hydroxyfasudil binding. Cardiac hypertrophy was verified with an increase in nuclear size (1.74 fold) and cell size (~2 fold), activation of hypertrophic signalling pathways, and increased Rho kinase activity (1.64 fold). This correlated to a 10.3% increase in N-[11C]-methyl-hydroxyfasudil binding. This data suggests that N-[11C]-methyl-hydroxyfasudil may be useful as a radiotracer for detecting cardiac hypertrophy and merits further in vivo investigation.
|
77 |
"Participação do sistema renina angiotensina na hipertrofia cardíaca induzida pelo treinamento resistido" / ROLE OF THE RENIN-ANGIOTENSIN SYSTEM IN RESISTANCE EXERCISE-INDUCED CARDIAC HYPERTROPHYValerio Garrone Barauna 07 March 2006 (has links)
Para avaliar a participação do Sistema Renina Angiotensina (SRA) sobre a Hipertrofia Cardíaca de ratos submetidos ao treinamento resistido foram usados 64 Ratos Wistar divididos em: Controle (CO), Treinado (TR), Controle ou Treinado tratados com Losartan (LOS; 20mg/Kg/d) e Controle ou Treinado tratados com NaCl (SAL; 1% água). Os grupos treinados realizaram quatro séries de 12 repetições, 5x/sem/8sem, com 65-75% de 1 Repetição Máxima (1RM). Hipertrofia cardíaca (HC), obtida pelo peso úmido do VE corrigida pelo Peso Corporal (PC) e pelo Ecocardiograma, foi observada no grupo TR com nenhum prejuízo da função ventricular. Tanto a atividade da ECA, sistêmica e local no coração, quanto a atividade da renina não foram alteradas pelo treinamento. Pelo Western blotting, não foi observada alteração na expressão protéica do peptídeo angiotensina II e do receptor de angiotensina II AT2 com o treinamento, mas observou-se aumento de 31,4% na expressão dos receptores de angiotensina II AT1 no grupo TR. A administração do antagonista do receptor AT1 (Losartan) preveniu a HC em resposta ao treinamento. O mesmo não foi observado com a administração do NaCl para inibir a atividade da Renina. Esses resultados sugerem que o receptor AT1 participa da HC induzida pelo treinamento resistido sem a necessidade de aumento na concentração da angiotensina II cardíaca. Um possível mecanismo seria a ativação direta dos receptores AT1 pelo estiramento mecânico dos cardiomiócitos. / Besides the well-known effects of Ang II in stimulating pathological pressure-overload cardiac hypertrophy, little information is available regarding the role of Renin-Angiotensin-System (RAS) in the exercise training-induced cardiac hypertrophy. 64 male Wistar rats were divided into 6 groups: Sedentary, Trained, Sedentary or Trained + Losartan (20mg/Kg/d, n=7) and Sedentary or Trained + Salt (NaCl 1%). The exercise protocol was: 4 x 12 bouts, 5x/week during eight weeks, with 65-75% of 1 Repetition Maximum (1RM). Using LV weight/body weight ratio and echocardiography (ECHO) we have observed cardiac hypertrophy in the Trained group without any impairment in ventricular function. Concerning RAS, neither ACE, analyzed by fluorometric assay (systemic and local in the heart), nor Renin, by RIA, activities were altered after resistance training. In addition, using Western blotting analysis, no change was observed in cardiac Ang II and AT2 receptor levels while the AT1 receptor expression was upregulated in Trained groups by 31,4%. Administration of the AT1 receptor antagonist (losartan) prevented left ventricle hypertrophy in response to the resistance training. The administration of salt, to inhibit the renin activity, did not prevent the cardiac hypertrophy. These results suggest that the AT1 receptor participates in resistance-training-induced cardiac hypertrophy without an increase in Ang II concentration in the heart. A possible mechanism is the direct activation of the AT1 receptor by mechanical stretching of cardiomyocytes.
|
78 |
Lionheart LincRNA alleviates cardiac systolic dysfunction under pressure overload / 長鎖非コードRNA Lionheartは圧負荷による心機能低下を緩和するTsuji, Shuhei 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23060号 / 医博第4687号 / 新制||医||1048(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 齊藤 博英, 教授 湊谷 謙司, 教授 萩原 正敏 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
79 |
Einfluss einer 24-stündigen Behandlung von ventrikulären neonatalen Kardiomyozyten mit einem Adipozyten-konditionierten Medium auf Hypertrophie - assoziierte Signalwege und ZellproteineGerhardt, Florian 06 March 2017 (has links)
Die weltweite Zunahme der Prävalenz von Übergewicht und Adipositas und den damit verbundenen medizinischen und sozioökonomischen Herausforderungen stellt eine der wesentlichen Herausforderungen der modernen medizinischen Versorgung dar. Im Mittelpunkt stehen dabei insbesondere die Auswirkungen von Übergewicht und Adipositas auf das kardiovaskuläre System und den damit verbundenen funktionellen und strukturellen Veränderungen der kardiovaskulären Funktion.Als Mediatoren dieser funktionellen und strukturellen Veränderungen stehen dabei zunehmend Adipozytokine im Interesse wissenschaftlicher Arbeiten. Unter Adipozytokinen versteht man in diesem Zusammenhang einen Sammelbegriff für von Adipozyten und anderen Fettgewebszellen sezernierten autokrin-, endokrin- und parakrin wirkenden bioaktiven Molekülen. Insbesondere bei Übergewicht und Adipositas kommt es zu einer charakteristischen Veränderung im Sekretionsmuster dieser Adipozytokine. Die Wirkung einzelner Adipozytokine auf die kardiovaskuläre Funktion wurde in den letzten Jahren intensiv untersucht, über die Wirkung ganzer Adipozytokinprofile ist bisher jedoch nur wenig bekannt.Ziel der vorliegenden Arbeit war es zu klären, welchen Einfluss eine 24-stündige Behandlung von neonatalen ventrikulären Kardiomyozyten mit einem physiologischen Adipozytokin-Profil auf Hypertrophie-assoziierte Signalwege und Zellproteine hat.
|
80 |
Einfluss einer 24-stündigen Behandlung von ventrikulären neonatalen Kardiomyozyten mit einem Adipozyten-konditionierten Medium auf Hypertrophie-assoziierte Signalwege und ZellproteineGerhardt, Florian 17 May 2017 (has links)
Die weltweite Zunahme der Prävalenz von Übergewicht und Adipositas und den damit verbundenen medizinischen und sozioökonomischen Herausforderungen stellt eine der wesentlichen Herausforderungen der modernen medizinischen Versorgung dar. Im Mittelpunkt stehen dabei insbesondere die Auswirkungen von Übergewicht und Adipositas auf das kardiovaskuläre System und den damit verbundenen funktionellen und strukturellen Veränderungen der kardiovaskulären Funktion.
Als Mediatoren dieser funktionellen und strukturellen Veränderungen stehen dabei zunehmend Adipozytokine im Interesse wissenschaftlicher Arbeiten. Unter Adipozytokinen versteht man in diesem Zusammenhang einen Sammelbegriff für von Adipozyten und anderen Fettgewebszellen sezernierten autokrin-, endokrin- und parakrin wirkenden bioaktiven Molekülen. Insbesondere bei Übergewicht und Adipositas kommt es zu einer charakteristischen Veränderung im Sekretionsmuster dieser Adipozytokine. Die Wirkung einzelner Adipozytokine auf die kardiovaskuläre Funktion wurde in den letzten Jahren intensiv untersucht, über die Wirkung ganzer Adipozytokinprofile ist bisher jedoch nur wenig bekannt.
Ziel der vorliegenden Arbeit war es zu klären, welchen Einfluss eine 24-stündige Behandlung von neonatalen ventrikulären Kardiomyozyten mit einem physiologischen Adipozytokin-Profil auf Hypertrophie-assoziierte Signalwege und Zellproteine hat.
|
Page generated in 0.0207 seconds