• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Latent Semantic Analysis as a Method of Content-Based Image Retrieval in Medical Applications

Makovoz, Gennadiy 01 January 2010 (has links)
The research investigated whether a Latent Semantic Analysis (LSA)-based approach to image retrieval can map pixel intensity into a smaller concept space with good accuracy and reasonable computational cost. From a large set of computed tomography (CT) images, a retrieval query found all images for a particular patient based on semantic similarity. The effectiveness of the LSA retrieval was evaluated based on precision, recall, and F-score. This work extended the application of LSA to high-resolution CT radiology images. The images were chosen for their unique characteristics and their importance in medicine. Because CT images are intensity-only, they carry less information than color images. They typically have greater noise, higher intensity, greater contrast, and fewer colors than a raw RGB image. The study targeted level of intensity for image features extraction. The focus of this work was a formal evaluation of the LSA method in the context of large number of high-resolution radiology images. The study reported on preprocessing and retrieval time and discussed how reduction of the feature set size affected the results. LSA is an information retrieval technique that is based on the vector-space model. It works by reducing the dimensionality of the vector space, bringing similar terms and documents closer together. Matlab software was used to report on retrieval and preprocessing time. In determining the minimum size of concept space, it was found that the best combination of precision, recall, and F-score was achieved with 250 concepts (k = 250). This research reported precision of 100% on 100% of the queries and recall close to 90% on 100% of the queries with k=250. Selecting a higher number of concepts did not improve recall and resulted in significantly increased computational cost.

Page generated in 0.0968 seconds