• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

How variations of the duration and time to peak of the Chicago Design Storm affect the hydraulic response, as well as the areas contributing to peak runoff, of a synthetic urban catchment area / Hur variationen av varaktighet och tid till regnintensitetsmaximum av Chicago Design Storm påverkar den hydrauliska responsen, samt de områden som bidrar till maximal avrinning, av ett syntetiskt avrinningsområde

Ahlstedt, Oskar January 2022 (has links)
With an expanding urbanization in the world, and thus the expansion of impermeable surfaces, the risk of pluvial floods is an increasing factor that needs to be considered. This, in combination with increasing rain intensities and frequency of rain events indicates a problem both today and for the future. With this in mind, it is an advantage to increase the knowledge of how different variations of extreme rainfall affects the hydraulic response of urban catchments, as well as which areas in urban environments contribute to the flood peak. The aims of this study are, with a particle tracking approach, to investigate how the peak runoff contributing areas differ geographically depending on the duration and time to peak of the rainfall event. This also includes the evaluation of what sizes of urban catchment areas are relevant to include when modelling the hydraulic response of Swedish urban catchment in relation to the characteristics of the hyetograph. The catchment area used in this study is made synthetically to represent a generic Swedish urban catchment with regards to the proportions of hardened surfaces, buildings and low points, as well as the slope of the catchment. Various variants of the Chicago Design Storm were implemented in the model. This included three different durations of 2-, 4- and 6 hours of which each, separately, constituted of three different time to peak that is decided by an r-value when creating the design storms. The r-values used in this study is 0.1, 0.4 and 0.8 where the values correlates to an early-, centred- and late peak of the hyetograph. To be able to investigate the peak contributing area, a particle tracking approach was initially used as an equivalent to tracers where the particles are first evenly distributed over the catchment area to then be concentrated to the locations that shows a variation in in the peak contributing area. This was done by using the modelling program MIKE 21 Flow Model FM powered by DHI, which also was used to run the hydrodynamic simulations of the inundation. The results of the hydrodynamic simulations showed that the rain events generated more runoff as the duration was extended. In addition, the timing of the peak of the rainfall intensity also had an impact on the result as the runoff increased with increasing r-value. Thus, as the peak of the hyetograph is delayed, it imposes an increasing risk of severe flooding. Furthermore, with the use of particle tracking, it could be concluded that the different design storm had an influence on the peak contributing distance where the distance grew larger when the duration of the rainfall event was extended and when the peak of the storm was delayed. / Med en ökande urbanisering i världen, och med det även en ökning av hårdgjorda ytor, är risken för pluviala översvämningar en allt större faktor som måste beaktas. Detta i kombination meden ökande regnintensitet samt nederbördsfrekvens indikerar ett problem både för idag och förframtiden. Med detta i åtanke är det en fördel att öka kunskapen om hur olika variationer avextrem nederbörd påverkar den hydrauliska responsen i urbana avrinningsområden, samt vilka områden i stadsmiljöer som bidrar till den maximala översvämningen. Syftet med denna studie är att, med hjälp av partikelspårning, undersöka hur peak-bidragande områden skiljer sig geografiskt beroende på regnets varaktighet samt tid till regnintensitetsmaximum. I detta ingår även utvärdering av vilka storlekar av urbana avrinningsområden som är relevanta att inkludera vid modellering av den hydrauliska responsen i förhållande till hyetografens egenskaper. Avrinningsområdet som används i denna studie är syntetiskt gjort för att representera ett generiskt svenskt urbant avrinningsområde med avseende på andelen hårdgjorda ytor, byggnader och lågpunkter, samt avrinningsområdets lutning. För att studera nederbördens inverkan på den hydrauliska responsen i avrinningsområdet implementerades olika varianter av en designstorm kallad Chicago Design Storm. Detta inkluderade tre olika varaktigheter på 2-,4- och 6 timmar av vilka var och en, separat, bestod av tre olika tid till regnintensitetsmaximum,vilket bestäms av ett r-värde vid skapandet av designstormarna. De r-värden som används i denna studie är 0.1, 0.4 och 0.8 där det lägre värdet korrelerar med en tidig topp, mittvärdet är lika med en centrerad topp och det högre värdet motsvarar en sen topp på hyetografen. För att kunna undersöka det peak-bidragande området användes initialt en partikelspårningsmetod som en motsvarighet till spårämnen där partiklarna först är jämnt fördelade över avrinningsområdetför att sedan koncentreras till de platser som visar en variation i det peak-bidragande området. Detta gjordes genom att använda modelleringsprogrammet MIKE 21 Flow Model FM som drivs av DHI, vilket också användes för att genomföra de hydrodynamiska simuleringarna av översvämningen. Det upptäcktes relativt tidigt i simuleringsstadiet av arbetet att det skulle vara svårt att identifiera det peak-bidragande området i avrinningsområdet, då majoriteten av de partiklarsom släpptes ut på platser med antingen lågt flöde eller låg vattennivå hade svårt att ta sig tillutloppet av avrinningsområdet. Med anledning av detta vändes fokus i studien mot avrinningsområdets centrala dräneringsväg där partiklarna kunde röra sig mer fritt. Därför togs ett beslut att undersöka det peak-bidragande avståndet längs den centrala dräneringsvägen istället för det peak-bidragande området. Resultaten av de hydrodynamiska simuleringarna visade att regnen genererade mer avrinning när varaktigheten förlängdes. Dessutom hade tidpunkten för toppen av nederbördsintensiteten också en inverkan på resultatet då avrinningen ökade med ökande r-värde. Allteftersom toppen av hyetografen senareläggs, medför den en ökande risk för allvarliga översvämningar. Vidare, med användningen av partikelspårning, gick det att dra slutsatsen att de olika designstormarna hade en effekt på det peak-bidragande avståndet, då avståndet blev större när varaktigheten av regnen förlängdes och när regnets intensitetstopp inträffade senare under regneventet.
2

The influence of storm movement and temporal variability of rainfall on urban pluvial flooding : 1D-2D modelling with empirical hyetographs and CDS-rain

Olsson, Jimmy January 2019 (has links)
Pluvial floods are formed directly from surface runoff after extreme rain events. Urban areas are prone to suffer from these floods due to large portions of hardened surfaces and limited capacity in the stormwater infrastructure. Previous research has shown that catchment response is influenced by the spatio-temporal behaviour of the rainstorm. A rainstorm moving in the same direction as the surface flow can amplify the runoff peak and temporal variability of rainfall intensity generally results in greater peak discharge compared to constant rainfall. This research attempted to relate the effect of storm movement on flood propagation in urban pluvial flooding to the effect from different distributions of rainfall intensity. An additional objective was to investigate the flood response from recent findings on the temporal variability in Swedish rain events and compare it to the flood depths produced by a CDS-rain (Chicago Design Storm), where the latter is the design practice in flood modelling today. A 2D surface model of an urban catchment was coupled with a 1D model of the drainage network and forced by six different hyetographs. Among them were five empirical hyetographs developed by Olsson et al. (2017) and one a CDS-rain. The rainstorms were simulated to move in different directions: along and against the surface flow direction, perpendicular to it and with no movement. Maximum flood depth was evaluated at ten locations and the model results show that storm movement had negligible effect on the flood depths. The impact from the movement was likely limited by the big difference in speed between the rainstorm and the surface flow. All evaluated locations showed a considerable sensitivity to changes in the hyetograph. The maximum flood depth increased at most with a factor of 1.9 depending on the hyetograph that was used as model input. The CDS-rain produced higher flood depths compared to the empirical hyetographs, although one of the empirical hyetographs produced a similar result. Based on the results from this case study, it was concluded that storm movement was not as critical as the temporal variability of rainfall when evaluating maximum flood depth. / Pluviala översvämningar skapas från ytavrinning vid intensiva nederbördstillfällen. De uppstår ofta i urbana miljöer till följd av den höga andelen hårdgjorda ytor och ledningsnätets begränsade kapacitet. Forskning har visat att ett regnmolns rörelseriktning och hastighet påverkar avrinningsförloppet. Om molnet rör sig längs med flödesriktningen i terrängen kan en ökning i vattenlödet nedströms ett avrinningsområde uppstå. Denna effekt har visat sig vara störst om hastigheten hos regnmolnet och vattenflödet är likvärdiga. Ytterliggare en faktor som påverkar avrinningsförloppet är hur regnintensiteten är fördelad över tid. Olsson et al. (2017) har tagit fram fem empiriska regntyper som speglar tidsfördelning inom ett Svenskt regntillfälle. Inom översvämningsmodellering är det vanligt att använda ett så kallat CDS-regn (Chicago Design Storm), vilken har en given tidsfördelning. Med anledning av detta är det intressant att jämföra översvämningar genererade av ett CDS-regn och av de empiriska regntyperna. Syftet med denna studie var att utreda hur regnmolns rörelse påverkar urbana pluviala översvämningar med avseende på vattendjup, samt att jämföra denna påverkan med effekten från olika tidsfördelningar av regnintensiteter. En kombinerad dagvattenmodell (1D) och markavrinningsmodell (2D) av en mindre svensk tätort användes för att simulera olika regnscenarier. De fem empiriska regntyperna och ett CDS-regn simulerades med en rörelseriktning längs med, emot och vinkelrätt i förhållande till flödesriktningen. Även scenarier med stationära regnmoln simulerades. Maximala översvämningsdjup utvärderades i tio punkter spridda över hela modellområdet. Resultatet från simuleringarna visade att regnmolnets rörelse hade försumbar påverkan på översvämningsdjupen. De olika tidsfördelningarna av regnintensitet hade däremot betydande påverkan på de maximala översvämningsdjupen. Som mest var det det maximala översvämningsdjupet 1.9 gånger större beroende vilken regntyp som användes som indata. CDS-regnet genererade i regel de största översvämningsdjupen, även om utfallet från en av de fem empiriska regntyperna var förhållandevis likvärdigt. Regnintensitetens tidsfördelning var därmed en kritisk parameter vid den hydrauliska modelleringen av urbana pluviala översävmningar, till skillnad från molnrörelse som hade försumbar påverkan.

Page generated in 0.0226 seconds