81 |
In vitro and in vivo evaluation of an improved glass-ionomer dental cement used for the atraumatic restorative treatment (ART) techniqueHo, Fu-tak. January 1996 (has links)
Thesis (M.D.S)--University of Hong Kong, 1996. / Includes bibliographical references (leaves 207-231) Also available in print.
|
82 |
Hertzian indentation failure of dental restorative materialsWang, Yan, January 2005 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
|
83 |
Micro-push-out bond strength and the modes of failure for a fiber-reinforced resin-post system cemented using four adhesive luting cementsMahindre, Prajakta Prakash. January 2009 (has links)
Thesis (M. D. S.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 48-67). Also available in print.
|
84 |
The effects of cortical bone viscoelasticity on the fixation/stability of cemented and cementless femoral implants a finite element analysis /Shultz, Travis R. January 2002 (has links)
Thesis (M.S.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains vii, 79 p. : ill. Includes abstract. Includes bibliographical references (p. 71-79).
|
85 |
Mechanical bond strengths of polymethylmethacrylate to metal surfacesWong, Scaven Wing Luen. January 1979 (has links)
No description available.
|
86 |
An early Permian subtropical carbonate system : sedimentology and diagenesis of the Raanes and Great Bear Cape formations, Sverdrup Basin, Arctic CanadaBensing, Joel P. 29 August 2007 (has links)
The Early Permian (Sakmarian to Kungarian) Raanes and Great Bear Cape formations of the Sverdrup Basin were deposited at a time of ocean cooling, and are interpreted to reflect a subtropical setting. Pelmatozoans, bryozoans, and brachiopods are the predominant fossils throughout the extent of these two units, with local occurrences of large fusulinids and colonial corals. This mixed photozoan-heterozoan assemblage is similar to the sediments of modern-day subtropical settings. Although the Raanes and Great Bear Cape have warm-water rocks below, and cool-water rocks above, the fossil assemblages in these formations were dependent upon changes in oceanography and sea-level. Three distinct phases, as determined by water depth and temperature, occur. First, the rocks of the Raanes and lower Great Bear Cape are deep water and heterozoan in nature. Second, the middle Great Bear Cape limestones record a time of shallow, subtropical waters. Finally, the upper Great Bear Cape is shallow-water, but cooling had progressed to a point that precluded the occurrence of any photozoan components, regardless of depth. Due to evolutionary changes in other subtropical biota, the most reliable fossil indicator of subtropical deposition in the rock record is large benthic foraminifera (including fusulinids) in an otherwise heterozoan assemblage. The identification of limestones representative of these conditions should, therefore, be identifiable at times in the Earth’s history when large benthic foraminifera lived in shallow marine environments.
The Great Bear Cape Formation subtropical facies underwent post-depositional changes that are manifest as calcite cements, iron-oxides, glauconite, and silica. Isopachous calcite cements precipitated in intraskeletal pore spaces as well as around the outside of grains. Glauconite, which is an authigenic marine mineral, has been oxidized to iron oxide, and both minerals post-date, or are included within, the isopachous cements. The isopachous cements must, therefore, have also formed in the marine environment. Where they are precipitated around pelmatozoan fragments, these originally high magnesium calcite cements have been neomorphosed to single-crystal epitaxial cements at the same time as mineral stabilization of the biofragments. These cements then seeded the growth of further epitaxial cement in the meteoric environment. / Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2007-08-21 10:58:18.958
|
87 |
Investigations into the mechanical properties and curing characteristics of dental glass-ionomer cements /Prentice, Leon H. January 2005 (has links)
Thesis (Ph.D.)--University of Melbourne, Faculty of Medicine, Dentistry and Health Science, 2005. / Author's name on cover: Leon Hugh Prentice. Typescript. Includes bibliographical references.
|
88 |
PMMA bone cement reinforced by plasma treated particles /Kim, Hong-Youl, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 82-86). Also available on the Internet.
|
89 |
PMMA bone cement reinforced by plasma treated particlesKim, Hong-Youl, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 82-86). Also available on the Internet.
|
90 |
Strontium apatite nanoparticle bioactive bone cement from biomaterial development to pre-clinical evaluations /Lam, Wing-moon, Raymond. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2010. / Includes bibliographical references (leaves 201-220). Also available in print.
|
Page generated in 0.1326 seconds