• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Longshore sediment transport rate calculated incorporating wave orbital velocity fluctuations

Smith, Ernest Ray 30 October 2006 (has links)
Laboratory experiments were performed to study and improve longshore sediment transport rate predictions. Measured total longshore transport in the laboratory was approximately three times greater for plunging breakers than spilling breakers. Three distinct zones of longshore transport were observed across the surf zone: the incipient breaker zone, inner surf zone, and swash zone. Transport at incipient breaking was influenced by breaker type; inner surf zone transport was dominated by wave height, independent of wave period; and swash zone transport was dependent on wave period. Selected predictive formulas to compute total load and distributed load transport were compared to laboratory and field data. Equations by Kamphuis (1991) and Madsen et al. (2003) gave consistent total sediment transport estimates for both laboratory and field data. Additionally, the CERC formula predicted measurements well if calibrated and applied to similar breaker types. Each of the distributed load models had shortcomings. The energetics model of Bodge and Dean (1987) was sensitive to fluctuations in energy dissipation and often predicted transport peaks that were not present in the data. The Watanabe (1992) equation, based on time-averaged bottom stress, predicted no transport at most laboratory locations. The Van Rijn (1993) model was comprehensive and required hydrodynamic, bedform, and sediment data. The model estimated the laboratory cross-shore distribution well, but greatly overestimated field transport. Seven models were developed in this study based on the principle that transported sediment is mobilized by the total shear stress acting on the bottom and transported by the current at that location. Shear stress, including the turbulent component, was calculated from the wave orbital velocity. Models 1 through 3 gave good estimates of the transport distribution, but underpredicted the transport peak near the plunging wave breakpoint. A suspension term was included in Models 4 through 7, which improved estimates near breaking for plunging breakers. Models 4, 5 and 7 also compared well to the field measurements. It was concluded that breaker type is an important variable in determining the amount of transport that occurs at a location. Lastly, inclusion of the turbulent component of the orbital velocity is vital in predictive sediment transport equations.

Page generated in 0.0438 seconds