• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling a controlled-sourced, multichemical plume undergoing natural attenuation

Martin, Caitlin January 2004 (has links)
Sampling of an emplaced creosote source installed below the water table at CFB Borden was conducted over a period of ten years, with over nine thousand samples taken from approximately 250 multilevel samplers. This extensive dataset was used in several attempts to model the multi-chemical plumes emanating from this emplaced source, and to further understand the chemical and biological processes affecting these plumes and their natural attenuation. An aerobic microcosm study of naphthalene, 1-methylnaphthalene and acenaphthene was conducted in order to determine the possibility of interactions between these three chemicals. All three chemicals degraded within the eight days of the study, and the degradation of naphthalene and 1-methylnaphthalene was not affected by the presence of any of the three chemicals studied. Acenaphthene degraded more quickly when naphthalene was present in the microcosm. The programs Visual MODFLOW and RT3D were used to model the transport and degradation of naphthalene at CFB Borden. Both a first order rate reaction module and a multiple electron acceptor reaction module were used, and contaminant mass was introduced to the model through a fence of observed concentrations. Good results were found at early time with the multiple electron acceptor reaction package, however at late time the model did not match to observations. The program BIONAPL/3D was used in a similar attempt to model the transport and degradation of naphthalene. Naphthalene mass was introduced to the model through a fence of observed concentrations, and multiple electron acceptors were used to degrade this chemical. Results were good at early time, but at late time the model did not match observations. BIONAPL was then used to simulate the dissolution of the original source NAPL. Several chemicals of interest were examined: naphthalene, m-xylene, 1-methylnaphthalene and acenaphthene. Naphthalene and m-xylene dissolved from the source at rates similar to observations, however the dissolution of 1-methylnaphthalene and acenaphthene was not as well modeled. As with the Visual MODFLOW model, the BIONAPL model which best matched observations generally worked well at early times, but did not at late times. The models were not able to successfully simulate many processes that occur in the field, such as chemical and biological interactions and NAPL source dissolution. Mismatches between the models and observations are likely due to these reasons. It may be that we do not fully understand these processes, so we are unable to model them.
2

Modeling a controlled-sourced, multichemical plume undergoing natural attenuation

Martin, Caitlin January 2004 (has links)
Sampling of an emplaced creosote source installed below the water table at CFB Borden was conducted over a period of ten years, with over nine thousand samples taken from approximately 250 multilevel samplers. This extensive dataset was used in several attempts to model the multi-chemical plumes emanating from this emplaced source, and to further understand the chemical and biological processes affecting these plumes and their natural attenuation. An aerobic microcosm study of naphthalene, 1-methylnaphthalene and acenaphthene was conducted in order to determine the possibility of interactions between these three chemicals. All three chemicals degraded within the eight days of the study, and the degradation of naphthalene and 1-methylnaphthalene was not affected by the presence of any of the three chemicals studied. Acenaphthene degraded more quickly when naphthalene was present in the microcosm. The programs Visual MODFLOW and RT3D were used to model the transport and degradation of naphthalene at CFB Borden. Both a first order rate reaction module and a multiple electron acceptor reaction module were used, and contaminant mass was introduced to the model through a fence of observed concentrations. Good results were found at early time with the multiple electron acceptor reaction package, however at late time the model did not match to observations. The program BIONAPL/3D was used in a similar attempt to model the transport and degradation of naphthalene. Naphthalene mass was introduced to the model through a fence of observed concentrations, and multiple electron acceptors were used to degrade this chemical. Results were good at early time, but at late time the model did not match observations. BIONAPL was then used to simulate the dissolution of the original source NAPL. Several chemicals of interest were examined: naphthalene, m-xylene, 1-methylnaphthalene and acenaphthene. Naphthalene and m-xylene dissolved from the source at rates similar to observations, however the dissolution of 1-methylnaphthalene and acenaphthene was not as well modeled. As with the Visual MODFLOW model, the BIONAPL model which best matched observations generally worked well at early times, but did not at late times. The models were not able to successfully simulate many processes that occur in the field, such as chemical and biological interactions and NAPL source dissolution. Mismatches between the models and observations are likely due to these reasons. It may be that we do not fully understand these processes, so we are unable to model them.
3

Monitoring a Shallow Gasoline Release using GPR at CFB Borden

McNaughton, Cameron, Hugh January 2011 (has links)
This hydrogeophysical field experiment evaluated the ability of high frequency (450 & 900 MHz) ground penetrating radar (GPR) to characterize the release of gasoline over an annual cycle of in situ conditions. In August 2008, 200 liters of E10 gasoline were released into the unconfined sand aquifer at CFB Borden. The 900 MHz profiling clearly shows the development of shallow (i.e., above 10 ns) high reflectivity in the vicinity of the trench immediately after the release. Additional lateral extension of high reflectivity zone was observed over the following 20 days until the seasonal water table low stand occurred, after which no further lateral movement was observed. Throughout the remainder of the monitoring, the 900 MHz profiling observed a long-term dimming of reflectivity at the periphery of the impacted zone. While direct imaging of the shallow impacted zone by the 450 MHz antennas was significantly obscured by the superposition with the direct air-ground wave arrival; its improved depth of penetration allowed the measurement of a velocity “pull-up” of an underlying stratigraphic interface resulting from the displacement of low velocity water by high velocity gasoline. The maximum pull-up was observed during the water table low stand. The ongoing changes in the pull-up magnitude during the remainder of the observation period suggest the continued redistribution of fluids in the impacted zone. Because of the shallow depth of the gasoline impacted zone, the effects of freezing during the winter period were observed in the GPR imaging. The presence of the gasoline impacted zone appears to have affected the depth of freezing, causing a depression of the frozen soil base. The dimming of the direct air-ground wave complex indicates that the contaminant phase brought to the surface by the water table fluctuations have impacted the nature of the near-surface freezing.
4

Monitoring a Shallow Gasoline Release using GPR at CFB Borden

McNaughton, Cameron, Hugh January 2011 (has links)
This hydrogeophysical field experiment evaluated the ability of high frequency (450 & 900 MHz) ground penetrating radar (GPR) to characterize the release of gasoline over an annual cycle of in situ conditions. In August 2008, 200 liters of E10 gasoline were released into the unconfined sand aquifer at CFB Borden. The 900 MHz profiling clearly shows the development of shallow (i.e., above 10 ns) high reflectivity in the vicinity of the trench immediately after the release. Additional lateral extension of high reflectivity zone was observed over the following 20 days until the seasonal water table low stand occurred, after which no further lateral movement was observed. Throughout the remainder of the monitoring, the 900 MHz profiling observed a long-term dimming of reflectivity at the periphery of the impacted zone. While direct imaging of the shallow impacted zone by the 450 MHz antennas was significantly obscured by the superposition with the direct air-ground wave arrival; its improved depth of penetration allowed the measurement of a velocity “pull-up” of an underlying stratigraphic interface resulting from the displacement of low velocity water by high velocity gasoline. The maximum pull-up was observed during the water table low stand. The ongoing changes in the pull-up magnitude during the remainder of the observation period suggest the continued redistribution of fluids in the impacted zone. Because of the shallow depth of the gasoline impacted zone, the effects of freezing during the winter period were observed in the GPR imaging. The presence of the gasoline impacted zone appears to have affected the depth of freezing, causing a depression of the frozen soil base. The dimming of the direct air-ground wave complex indicates that the contaminant phase brought to the surface by the water table fluctuations have impacted the nature of the near-surface freezing.

Page generated in 0.0257 seconds