• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mass conservative network model for convective net flow in a complex urban geometry

Olofsson, Linus January 2016 (has links)
When simulating air flows in an urban environment, for e.g. pollutant dispersion investigations, today's main tool is advanced computational fluid dynamics simulations. These simulations take a lot of time and resources to perform, even for small geometries. In some situations, one would like to be able to run approximate simulations, possibly with large geometries, without such a significant investment. The model described in this thesis is a graph network model which have streets and intersections of an urban environment modeled as connections and nodes in a graph. The model uses a pressured pipe model, based on the Darcy-Weisbach equation, to simulate air flow in the network. Such a model requires only rough measurements of the urban geometry and an estimated Darcy's friction factor, to be able to solve the system. Furthermore, using the same rough geometrical parameters, together with shear velocity, the model solves atmospheric exchange rates of the streets. Intersections play a major role when investigating urban dispersion. The way this model deals with dispersion in any complex intersections, represented by single nodes, is by using wind direction variance together with a distribution parameter based on computational fluid dynamics intersection simulations made in Comsol Multiphysics - also present in this paper. Using the simple model described above, I have simulated urban air flows in a complex urban geometry of a part of Paris. This specific geometry has already been investigated by computational fluid dynamics simulations as well as wind tunnel experiments. By comparing the computational fluid dynamics simulation with my model, I have validated its accuracy. 40% and 45% of all streets reach a relative and absolute error below 25% respectively. Directions of the street velocities have been simulated with approximately 90% accuracy - with distinct error indications. Atmospheric exchange rates of the streets are within an order of magnitude accurate, however, showing a systematic error by overestimating the vast majority of the exchange rates. The model could become even better by covering error sources discussed in the discussion section. Excess theory for simulating each of the above-described flows is presented, which might change the results. For example, slightly altering the modeling of the atmospheric exchange rate might fix the overestimation offset we have seen. Potential error sources could be the varying building heights and the streets angle relative the overlaying wind direction. The pressured pipe simulated flows have shown tendencies to be bad at picking up the effects of high/low buildings following low/high buildings, as well as accurately capture the behavior of streets close to perpendicular to the wind direction. Main streets with plenty of exits have been modeled with intersections at each exit, which results in strong flow variation along a street that should have a flow close to constant. Solving main streets like this separately could improve this behavior drastically.
2

Feature extraction and visualization from higher-order CFD data / Extração de estruturas e visualização de soluções de DFC de alta ordem

Pagot, Christian Azambuja January 2011 (has links)
Métodos de simulação baseados em dinâmica de fluidos computacional (DFC) têm sido empregado em diversas areas de estudo, tais como aeroacústica, dinâmica dos gases, fluidos viscoelásticos, entre outros. Entretanto, a necessidade de maior acurácia e desempenho destes métodos têm dado origem a soluções representadas por conjuntos de dados cada vez mais complexos. Neste contexto, técnicas voltadas à extração de estruturas relevantes (features), e sua posterior visualização, têm um papel muito importante, tornando mais fácil e intuitiva a análise dos dados gerados por simulações. Os métodos de extração de estruturas detectam e isolam elementos significativos no contexto da análise dos dados. No caso da análise de fluidos, estas estruturas podem ser isosuperfícies de pressão, vórtices, linhas de separação, etc. A visualização, por outro lado, confere atributos visuais a estas estruturas, permitindo uma análise mais intuitiva através de sua inspeção visual. Tradicionalmente, métodos de DFC representam suas soluções como funções lineares definidas sobre elementos do domínio. Entretanto, a evolução desses métodos tem dado origem a soluções representadas analiticamente através de funções de alta ordem. Apesar destes métodos apresentarem características desejáveis do ponto de vista de eficiência e acurácia, os dados gerados não são compatíveis com os métodos de extração de estruturas ou de visualização desenvolvidos originalmente para dados interpolados linearmente. Uma alternativa para este problema consiste na redução da ordem dos dados através de reamostragem e posterior aplicação de métodos tradicionais para extração de estruturas e visualização. Porém, o processo de amostragem pode introduzir erros nos dados ou resultar em excessivo consumo de memória, necessária ao armazenamento das amostras. Desta forma, torna-se necessário o desenvolvimento de métodos de extração e visualização que possam operar diretamente sobre os dados de alta ordem. As principais contribuições deste trabalho consistem em dois métodos que operam diretamente sobre dados de alta ordem. O primeiro consiste em um método para extração e visualização de isosuperfícies. O método baseia-se em uma abordagem híbrida que, ao distribuir o esforço computacional envolvido na extração e visualização das isosuperfícies em operações executadas nos espaços do objeto e da imagem, permite a exploração interativa de isosuperfícies através da troca de isovalores. O segundo método consiste em uma técnica para extração de estruturas lineares, onde a avaliação da forma intervalar do operador parallel vectors, em conjunto com métodos de subdivisão adaptativa, é utilizada como critério de pesquisa destas estruturas. Ambos os métodos foram projetados para tirarem proveito do paralelismo do hardware gráfico. Os resultados obtidos são apresentados tanto para dados sintéticos quanto para dados de simulações gerados através do método de Galerkin discontínuo. / Computational fluid dynamics (CFD) methods have been employed in the studies of subjects such as aeroacoustics, gas dynamics, turbo machinery, viscoelastic fluids, among others. However, the need for accuracy and high performance resulted in methods whose solutions are becoming increasingly more complex. In this context, feature extraction and visualization methods play a key role, making it easier and more intuitive to explore and analyze the simulation data. Feature extraction methods detect and isolate relevant structures in the context of data analysis. In the case of flow analysis, these structures could be pressure isocontours, vortex cores, detachment lines, etc. By assigning visual attributes to these structures, visualization methods allow for a more intuitive analysis through visual inspection. Traditionally, CFD methods represent the solution as piecewise linear basis functions defined over domain elements. However, the evolution of CFD methods has led to solutions represented analytically by higher-order functions. Despite their accuracy and efficiency, data generated by these methods are not compatible with feature extraction and visualization methods targeted to linearly interpolated data. An alternative approach is resampling, which allows the use of existing low order feature extraction and visualization methods. However, resampling is not desirable since it may introduce error due to subsampling and increase memory consumption associated to samples storage. To overcome these limitations, attention has recently been given to methods that handle higher-order data directly. The main contributions of this thesis are two methods developed to operate directly over higher-order data. The first method consists of an isocontouring method. It relies on a hybrid technique that, by splitting the isocontouring workload over image and object space computations, allows for interactive data exploration by dynamically changing isovalues. The second method is a line-type feature extraction method. The search for features is accomplished using adaptive subdivision methods driven by the evaluation of the inclusion form of the parallel vectors operator. Both methods were designed to take advantage of the parallelism of current graphics hardware. The obtained results are presented for synthetic and real simulation higher-order data generated with the discontinuous Galerkin method.
3

Feature extraction and visualization from higher-order CFD data / Extração de estruturas e visualização de soluções de DFC de alta ordem

Pagot, Christian Azambuja January 2011 (has links)
Métodos de simulação baseados em dinâmica de fluidos computacional (DFC) têm sido empregado em diversas areas de estudo, tais como aeroacústica, dinâmica dos gases, fluidos viscoelásticos, entre outros. Entretanto, a necessidade de maior acurácia e desempenho destes métodos têm dado origem a soluções representadas por conjuntos de dados cada vez mais complexos. Neste contexto, técnicas voltadas à extração de estruturas relevantes (features), e sua posterior visualização, têm um papel muito importante, tornando mais fácil e intuitiva a análise dos dados gerados por simulações. Os métodos de extração de estruturas detectam e isolam elementos significativos no contexto da análise dos dados. No caso da análise de fluidos, estas estruturas podem ser isosuperfícies de pressão, vórtices, linhas de separação, etc. A visualização, por outro lado, confere atributos visuais a estas estruturas, permitindo uma análise mais intuitiva através de sua inspeção visual. Tradicionalmente, métodos de DFC representam suas soluções como funções lineares definidas sobre elementos do domínio. Entretanto, a evolução desses métodos tem dado origem a soluções representadas analiticamente através de funções de alta ordem. Apesar destes métodos apresentarem características desejáveis do ponto de vista de eficiência e acurácia, os dados gerados não são compatíveis com os métodos de extração de estruturas ou de visualização desenvolvidos originalmente para dados interpolados linearmente. Uma alternativa para este problema consiste na redução da ordem dos dados através de reamostragem e posterior aplicação de métodos tradicionais para extração de estruturas e visualização. Porém, o processo de amostragem pode introduzir erros nos dados ou resultar em excessivo consumo de memória, necessária ao armazenamento das amostras. Desta forma, torna-se necessário o desenvolvimento de métodos de extração e visualização que possam operar diretamente sobre os dados de alta ordem. As principais contribuições deste trabalho consistem em dois métodos que operam diretamente sobre dados de alta ordem. O primeiro consiste em um método para extração e visualização de isosuperfícies. O método baseia-se em uma abordagem híbrida que, ao distribuir o esforço computacional envolvido na extração e visualização das isosuperfícies em operações executadas nos espaços do objeto e da imagem, permite a exploração interativa de isosuperfícies através da troca de isovalores. O segundo método consiste em uma técnica para extração de estruturas lineares, onde a avaliação da forma intervalar do operador parallel vectors, em conjunto com métodos de subdivisão adaptativa, é utilizada como critério de pesquisa destas estruturas. Ambos os métodos foram projetados para tirarem proveito do paralelismo do hardware gráfico. Os resultados obtidos são apresentados tanto para dados sintéticos quanto para dados de simulações gerados através do método de Galerkin discontínuo. / Computational fluid dynamics (CFD) methods have been employed in the studies of subjects such as aeroacoustics, gas dynamics, turbo machinery, viscoelastic fluids, among others. However, the need for accuracy and high performance resulted in methods whose solutions are becoming increasingly more complex. In this context, feature extraction and visualization methods play a key role, making it easier and more intuitive to explore and analyze the simulation data. Feature extraction methods detect and isolate relevant structures in the context of data analysis. In the case of flow analysis, these structures could be pressure isocontours, vortex cores, detachment lines, etc. By assigning visual attributes to these structures, visualization methods allow for a more intuitive analysis through visual inspection. Traditionally, CFD methods represent the solution as piecewise linear basis functions defined over domain elements. However, the evolution of CFD methods has led to solutions represented analytically by higher-order functions. Despite their accuracy and efficiency, data generated by these methods are not compatible with feature extraction and visualization methods targeted to linearly interpolated data. An alternative approach is resampling, which allows the use of existing low order feature extraction and visualization methods. However, resampling is not desirable since it may introduce error due to subsampling and increase memory consumption associated to samples storage. To overcome these limitations, attention has recently been given to methods that handle higher-order data directly. The main contributions of this thesis are two methods developed to operate directly over higher-order data. The first method consists of an isocontouring method. It relies on a hybrid technique that, by splitting the isocontouring workload over image and object space computations, allows for interactive data exploration by dynamically changing isovalues. The second method is a line-type feature extraction method. The search for features is accomplished using adaptive subdivision methods driven by the evaluation of the inclusion form of the parallel vectors operator. Both methods were designed to take advantage of the parallelism of current graphics hardware. The obtained results are presented for synthetic and real simulation higher-order data generated with the discontinuous Galerkin method.
4

Feature extraction and visualization from higher-order CFD data / Extração de estruturas e visualização de soluções de DFC de alta ordem

Pagot, Christian Azambuja January 2011 (has links)
Métodos de simulação baseados em dinâmica de fluidos computacional (DFC) têm sido empregado em diversas areas de estudo, tais como aeroacústica, dinâmica dos gases, fluidos viscoelásticos, entre outros. Entretanto, a necessidade de maior acurácia e desempenho destes métodos têm dado origem a soluções representadas por conjuntos de dados cada vez mais complexos. Neste contexto, técnicas voltadas à extração de estruturas relevantes (features), e sua posterior visualização, têm um papel muito importante, tornando mais fácil e intuitiva a análise dos dados gerados por simulações. Os métodos de extração de estruturas detectam e isolam elementos significativos no contexto da análise dos dados. No caso da análise de fluidos, estas estruturas podem ser isosuperfícies de pressão, vórtices, linhas de separação, etc. A visualização, por outro lado, confere atributos visuais a estas estruturas, permitindo uma análise mais intuitiva através de sua inspeção visual. Tradicionalmente, métodos de DFC representam suas soluções como funções lineares definidas sobre elementos do domínio. Entretanto, a evolução desses métodos tem dado origem a soluções representadas analiticamente através de funções de alta ordem. Apesar destes métodos apresentarem características desejáveis do ponto de vista de eficiência e acurácia, os dados gerados não são compatíveis com os métodos de extração de estruturas ou de visualização desenvolvidos originalmente para dados interpolados linearmente. Uma alternativa para este problema consiste na redução da ordem dos dados através de reamostragem e posterior aplicação de métodos tradicionais para extração de estruturas e visualização. Porém, o processo de amostragem pode introduzir erros nos dados ou resultar em excessivo consumo de memória, necessária ao armazenamento das amostras. Desta forma, torna-se necessário o desenvolvimento de métodos de extração e visualização que possam operar diretamente sobre os dados de alta ordem. As principais contribuições deste trabalho consistem em dois métodos que operam diretamente sobre dados de alta ordem. O primeiro consiste em um método para extração e visualização de isosuperfícies. O método baseia-se em uma abordagem híbrida que, ao distribuir o esforço computacional envolvido na extração e visualização das isosuperfícies em operações executadas nos espaços do objeto e da imagem, permite a exploração interativa de isosuperfícies através da troca de isovalores. O segundo método consiste em uma técnica para extração de estruturas lineares, onde a avaliação da forma intervalar do operador parallel vectors, em conjunto com métodos de subdivisão adaptativa, é utilizada como critério de pesquisa destas estruturas. Ambos os métodos foram projetados para tirarem proveito do paralelismo do hardware gráfico. Os resultados obtidos são apresentados tanto para dados sintéticos quanto para dados de simulações gerados através do método de Galerkin discontínuo. / Computational fluid dynamics (CFD) methods have been employed in the studies of subjects such as aeroacoustics, gas dynamics, turbo machinery, viscoelastic fluids, among others. However, the need for accuracy and high performance resulted in methods whose solutions are becoming increasingly more complex. In this context, feature extraction and visualization methods play a key role, making it easier and more intuitive to explore and analyze the simulation data. Feature extraction methods detect and isolate relevant structures in the context of data analysis. In the case of flow analysis, these structures could be pressure isocontours, vortex cores, detachment lines, etc. By assigning visual attributes to these structures, visualization methods allow for a more intuitive analysis through visual inspection. Traditionally, CFD methods represent the solution as piecewise linear basis functions defined over domain elements. However, the evolution of CFD methods has led to solutions represented analytically by higher-order functions. Despite their accuracy and efficiency, data generated by these methods are not compatible with feature extraction and visualization methods targeted to linearly interpolated data. An alternative approach is resampling, which allows the use of existing low order feature extraction and visualization methods. However, resampling is not desirable since it may introduce error due to subsampling and increase memory consumption associated to samples storage. To overcome these limitations, attention has recently been given to methods that handle higher-order data directly. The main contributions of this thesis are two methods developed to operate directly over higher-order data. The first method consists of an isocontouring method. It relies on a hybrid technique that, by splitting the isocontouring workload over image and object space computations, allows for interactive data exploration by dynamically changing isovalues. The second method is a line-type feature extraction method. The search for features is accomplished using adaptive subdivision methods driven by the evaluation of the inclusion form of the parallel vectors operator. Both methods were designed to take advantage of the parallelism of current graphics hardware. The obtained results are presented for synthetic and real simulation higher-order data generated with the discontinuous Galerkin method.

Page generated in 0.0483 seconds