Spelling suggestions: "subject:"CFD-CSD coupling"" "subject:"CFD-CSD doupling""
1 |
境界層の超音速パネルフラッタへの影響橋本, 敦, HASHIMOTO, Atsushi, 八木, 直人, YAGI, Naoto, 中村, 佳朗, NAKAMURA, Yoshiaki 05 April 2007 (has links)
No description available.
|
2 |
Using tightly-coupled CFD/CSD simulation for rotorcraft stability analysisZaki, Afifa Adel 17 January 2012 (has links)
Dynamic stall deeply affects the response
of helicopter rotor blades, making its modeling accuracy very important. Two commonly used dynamic stall models were implemented
in a comprehensive code, validated, and contrasted to provide improved analysis
accuracy and versatility. Next, computational fluid dynamics and computational structural dynamics loose coupling methodologies are reviewed, and a general tight coupling approach was implemented and tested. The tightly coupled
computational fluid dynamics and computational structural dynamics methodology is then used to assess the stability characteristics of complex rotorcraft problems. An aeroelastic analysis of rotors must include an assessment of
potential instabilities and the determination of damping ratios for all modes of interest. If
the governing equations of motion of a system can be formulated as linear, ordinary
differential equations with constant coefficients, classical stability evaluation
methodologies based on the characteristic exponents of the system can rapidly and
accurately provide the system's stability characteristics. For systems described by linear,
ordinary differential equations with periodic coefficients, Floquet's theory is the preferred
approach. While these methods provide excellent results for simplified linear models with
a moderate number of degrees of freedom, they become quickly unwieldy as the number
of degrees of freedom increases. Therefore, to accurately analyze rotorcraft aeroelastic
periodic systems, a fully nonlinear, coupled simulation tool is used to determine the
response of the system to perturbations about an equilibrium configuration and determine
the presence of instabilities and damping ratios. The stability analysis is undertaken using
an algorithm based on a Partial Floquet approach that has been successfully applied with
computational structural dynamics tools on rotors and wind turbines. The stability analysis approach is computationally
inexpensive and consists of post processing aeroelastic data, which can be used with any
aeroelastic rotorcraft code or with experimental data.
|
3 |
A physics based investigation of gurney flaps for enhancement of rotorcraft flight characteristicsMin, Byung-Young 26 March 2010 (has links)
Helicopters are versatile vehicles that can vertically take off and land, hover, and perform maneuver at very low forward speeds. These characteristics make them unique for a number of civilian and military applications. However, the radial and azimuthal variation of dynamic pressure causes rotors to experience adverse phenomena such as transonic shocks and 3-D dynamic stall. Adverse interactions such as blade vortex interaction and rotor-airframe interaction may also occur. These phenomena contribute to noise and vibrations. Finally, in the event of an engine failure, rotorcraft tends to descend at high vertical velocities causing structural damage and loss of lives.
A variety of techniques have been proposed for reducing the noise and vibrations. These techniques include on-board control (OBC) devices, individual blade control (IBC), and higher harmonic control (HHC). Addition of these devices adds to the weight, cost, and complexity of the rotor system, and reduces the reliability of operations. Simpler OBC concepts will greatly alleviate these drawbacks and enhance the operating envelope of vehicles.
In this study, the use of Gurney flaps is explored as an OBC concept using a physics based approach. A three dimensional Navier-Stokes solver developed by the present investigator is coupled to an existing free wake model of the wake structure. The method is further enhanced for modeling of Blade-Vortex-Interactions (BVI). Loose coupling with an existing comprehensive structural dynamics analysis solver (DYMORE) is implemented for the purpose of rotor trim and modeling of aeroelastic effects.
Results are presented for Gurney flaps as an OBC concept for improvements in autorotation, rotor vibration reduction, and BVI characteristics. As a representative rotor, the HART-II model rotor is used.
It is found that the Gurney flap increases propulsive force in the driving region while the drag force is increased in the driven region. It is concluded that the deployable Gurney flap may improve autorotation characteristics if deployed only over the driving region. Although the net effect of the increased propulsive and drag force results in a faster descent rate when the trim state is maintained for identical thrust, it is found that permanently deployed Gurney flaps with fixed control settings may be useful in flare operations before landing by increasing thrust and lowering the descent rate.
The potential of deployable Gurney flap is demonstrated for rotor vibration reduction. The 4P harmonic of the vertical vibratory load is reduced by 80% or more, while maintaining the trim state. The 4P and 8P harmonic loads are successfully suppressed simultaneously using individually controlled multi-segmented flaps.
Finally, simulations aimed at BVI avoidance using deployable Gurney flaps are also presented.
|
Page generated in 0.064 seconds