Spelling suggestions: "subject:"ananalysis"" "subject:"3danalysis""
31 |
Transient Dynamics of Compound Drops in Shear and Pressure Driven FlowSang Kyu Kim (8099576) 09 December 2019 (has links)
Multiphase flows abound in nature and enterprises. Our daily interactions with fluids - washing, drinking, and cooking, for example - occur at a free surface and within the realm of multiphase flows. The applications of multiphase flows within the context of emulsions, which are caused by mixing two immiscible fluids, have been of interest since the nineteenth century: compartmentalizing one fluid in another is particularly of interest in applications in pharmaceutical, materials, microfluidics, chemical, and biological engineering. Even more control in compartmentalization and delivery can be obtained through the usage of double emulsions, which are emulsions of smaller drops (i.e., inner drop) within larger drops (i.e., outer drop). The goal of this work is to understand the dynamic behavior of compound drops in confined flow at low Reynolds numbers. These behaviors include the migration patterns, limit cycles, and equilibrium locations in confined flows such as channel flows.<br> <br>Firstly, we look at non-concentric compound drops that are subject to simple shear flows. The eccentricity in the inner drop is either within the place of shear, normal to the plane of shear, or mixed. We show unreported motions that persist throughout time regardless of the initial eccentricity, given that the deformations of the inner and outer drops are small. Understanding the temporal dynamics of compound drops within the simple shear flow, one of the simplest background flows that may be imposed, allows us to probe at the dynamics of more complicated background flows.<br> <br>Secondly, we look at the lateral migration of compound drops in a Poiseuille flow. Depending on the initial condition, we show that there are multiple equilibria. We also show that the majority of initial configurations results in the compound drop with symmetry about the short wall direction. We then show the time it takes for the interfaces to merge if a given initial configuration does not reach the aforementioned symmetry.<br> <br>Thirdly, while the different equilibria of compound drops offer some positional differences at different radii ratio, we show that the lift force profiles at non-equilibrium locations offer distinctly different results for compound drops with different radii ratio. We then look at how this effect is greater than changes that arise due to viscosity ratio changes, and offer insights on what may create such a change in the lift force profile.
|
32 |
Návrh výměníku tepla / Design of heat exchangerBuzík, Jiří January 2013 (has links)
The master thesis deals with thermal hydraulic design and strength design of a heat exchanger with “U” tube bundle inside of a shell. The first chapter introduces general design issues of the heat exchangers. The following chapter describes thermal hydraulic design created in software Maple 16.0 by using Kern’s method and the method of Bell-Delaware. HTRI software was used for the control of thermal hydraulic design correctness. To check critical locations of fluid flow in space between the tubes, the CFD model was created at ANSYS Fluent 14.0 software. Accuracy of strength design was verifying by Sant’ Ambrogio software in accordance with ČSN EN 13 445 standards. The last chapter concerns with FEM analysis. According to standards ČSN EN 13 445 the design by analysis namely method based on stress categories were used for the strength analysis of nozzle.
|
Page generated in 0.0316 seconds