• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MOMENT CONNECTIONS OF CONCRETE-FILLED FIBRE REINFORCED POLYMER TUBES TO REINFORCED CONCRETE FOOTINGS

Lai, Yu Ching 29 January 2010 (has links)
Fiber reinforced polymers (FRPs) are increasingly being accepted in structural engineering applications. One promising system involves the use of concrete-filled FRP tubes (CFFTs) as bridge piers, columns or piles. While CFFT members have been extensively studied under various loading conditions, very little attention has been given to their connections to other structural components such as footings and beams. This study explores two different moment connections for CFFT members, using 13 medium-scale specimens and seven ancillary tests. The first connection involves embedment of the FRP tube into the concrete foundations during casting. Five-219 mm diameter (D) precast CFFTs were embedded into 500x500x500 mm concrete foundation each, at different embedment lengths ranging from 0.3D to 1.5D and tested in flexure as cantilevers with 1100 mm spans. The study showed that the optimal embedment length was 0.73D. This was essentially the minimum embedment length necessary to produce tension failure of the CFFT member outside the footing, rather than premature bond failure that would otherwise occur at lower loads. Additionally, six push-through tests were conducted on CFFT stubs embedded into footings. The average bond strength was found to be 0.75 MPa. The second connection involved adhesive bonding of hollow FRP tubes to short reinforced concrete circular stubs protruding from concrete footings. The remainder of the tube was then filled with concrete, without the need for shoring. Four-169 mm diameter FRP tubes were first adhesively bonded onto footings with heavily steel-reinforced concrete stubs varying in length from 0.5D to 2.0D, and tested as cantilevers with 1300 mm spans. The optimal bond length that would lead to flexural failure of the tube just outside the stub, rather than bond failure, was about 1.1D. Based on this, two additional specimens with 1.5D stubs having varying steel reinforcement ratio (ρ) in the stubs were tested. It was shown that the optimal ρ was 2.5%. Finally, the effect of low cycle reversed bending fatigue was studied using two additional specimens, including one with a sustained axial load of 15-19% of the CFFT axial capacity. Remarkable levels of ductility associated with the plastic hinge forming in the stub were observed. / Thesis (Master, Civil Engineering) -- Queen's University, 2010-01-28 16:09:40.606
2

THE DYNAMIC RESPONSE OF CONCRETE FILLED FRP TUBES SUBJECTED TO BLAST AND IMPACT LOADING

Qasrawi, YAZAN 28 January 2014 (has links)
Blasts and impacts are two of the severest loads a structure can experience. Blast experimenters, however, have observed that the load imparted to a circular member was lower than the predicted design load. Additionally, numerous investigations have established the superiority of concrete filled FRP tubes (CFFTs) over conventional reinforced concrete members. These observations indicated CFFTs’ potential to resist dynamic blast and impact loads. The experimental and numerical investigations presented in this thesis aimed to demonstrate the suitability of CFFTs to resist blast and impact loads, to determine the parameters that influence their behaviour under such loads, and to develop a design procedure for resisting these loads. The initial numerical investigation determined the reflected blast loading parameters experienced by a circular cross section. The experimental phase consisted of testing twelve full scale specimens, two monotonically, four under impact loading, and six under close-in blast loading. The monotonically tested specimens acted as controls for the entire program. The results of the impact testing investigation were used to develop and validate a non-linear single degree of freedom (SDOF) model. This impact phase also led to the development of relatively simple procedures for designing CFFTs under impact loading using either SDOF modeling or the conservation of energy. Analysis of the blast testing results led to the development of numerical procedures for obtaining an equivalent close-in blast loading for SDOF analysis of CFFTs and Pressure-Impulse diagrams. The use of SDOF modeling and conservation of energy in blast design were also discussed. Finally, a non-linear explicit dynamic model of CFFTs was developed using the commercial software ANSYS Autodyn. This model was verified using the experimental impact and blast test results and used to conduct a parametric study. The results of these investigations indicated that CFFTs were particularly suitable for blast and impact resistant applications, as their geometry diffracted blast waves and the addition of the tube increased their energy absorbing capacity significantly giving them additional strength and ductility. The tube also confined and protected the concrete core and simplified construction. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2014-01-27 15:57:52.768
3

Finite Element Modelling of CFFT Small-Scale Wind Turbine Towers

Gong, Yikai 13 October 2021 (has links)
Wind energy has emerged as a promising and renewable solution to reduce reliance on fossil fuels in remote off-grid locations. Conventional wind turbine towers are made from concrete or steel, which present several significant drawbacks in certain applications. The use of lightweight and corrosion-resistant fibre reinforced polymer (FRP) tubes as permanent structural formwork can mitigate these challenges. Existing literature has highlighted the performance of concrete-filled FRP tubes (CFFTs) through experiments and successful applications in the field. However, only a few cantilever CFFTs have been tested, and their sizes were much smaller than required for wind turbine towers. In consequence, this thesis focuses on relatively large cantilever CFFTs at a scale representative of small wind turbine towers. The finite element (FE) method was adopted to simulate the behaviour of CFFT towers using the commercial software ABAQUS. The first part of this thesis presents the development and validation of CFFT FE models under bending and axial loading conditions, as well as hollow FRP tubes under bending. The models were compared to experimental results reported by Fam (2000) to ensure the selection of appropriate material properties. Good agreements were observed, and the accuracy of the FE modelling approach was proved. Subsequently, a parametric study was conducted to explore the feasibility of CFFTs for wind turbine towers. The analyses of cantilever towers with different geometric properties and reinforcement configurations under concentrated lateral load were performed first. Then, a cantilever CFFT tower under different loading configurations was tested. It is noted that towers subjected to concentrated load had the lowest load capacity and stiffness. Conclusions were made that with or without axial load, lateral load eccentricity does not affect the behaviour of cantilever CFFTs significantly. Meanwhile, the increase in height-to-diameter ratio decreases the load capacity and stiffness of cantilever CFFTs. Finally, the CFFT tower results were compared with concrete and steel tubular models with similar geometry. The results suggest that CFFTs have better overall performance than the other two types of towers. They are also superior with respect to flexibility in installation and their durability.
4

Comparing Different Types of Visual Perceptual Learning Tasks’ Effects on Reading Ability

January 2015 (has links)
abstract: Magnocellular-Dorsal pathway’s function had been related to reading ability, and visual perceptual learning can effectively increase the function of this neural pathway. Previous researches training people with a traditional dot motion paradigm and an integrated visual perceptual training “video game” called Ultimeyes pro, all showed improvement with regard to people’s reading performance. This research used 2 paradigms in 2 groups in order to compare the 2 paradigms’ effect on improving people’s reading ability. We also measured participants’ critical flicker fusion threshold (CFFT), which is related to word decoding ability. The result did not show significant improvement of reading performance in each group, but overall the reading speed improved significantly. The result for CFFT in each group only showed significant improvement among people who trained with Ultimeyes pro. This result supports that the beneficial effect of visual perceptual learning training on people’s reading ability, and it suggests that Ultimeyes pro is more efficient than the traditional dot motion paradigm, and might have more application value. / Dissertation/Thesis / Masters Thesis Psychology 2015
5

Behaviour of reinforced CFFT columns under axial compression loading / Comportement axial de colonnes en béton armé renforcées de tubes en matériaux composites

Ahmed, Asmaa Abdeldaim Ibrahim January 2016 (has links)
Abstract : The construction industry is expressing great demand for innovative and durable structural members such as bridge decks and piers, piling, and poles. Many steel-reinforced concrete structures subjected to de-icing salts and marine environments require extensive and expensive maintenance. Fiber-reinforced polymers (FRPs) have recently gained wide acceptance as a viable construction material for repair, rehabilitation, or new construction of the aging infrastructures particularly those exposed to harsh environment conditions. The promising concept of concrete-filled FRP tube (CFFT) system, that may be further reinforced with steel or FRP bars, has raised great interest amongst researchers in the last decade. The CFFT technique has been used successfully in different concrete structure elements such as pier column and girder for bridges and also as fender piles in marine structures. The FRP tube acts as a stay-in-place structural formwork, a noncorrosive reinforcement for the concrete for flexure and shear, provides confinement to the concrete in compression, and the contained concrete is protected from intrusion of moisture with corrosive agents that could otherwise deteriorate the concrete core. Using FRP bars instead of conventional steel bars in the CFFT columns can provide a step forward to develop a promising totally corrosion-free new structural system. Nonetheless, the axial behaviour of FRP bars as longitudinal reinforcement in compression members has yet to be explored, especially for the CFFT columns. To date, most of the experimental investigations performed on FRP confined concrete columns have considered short, unreinforced, small-scale concrete cylinders, tested under concentric, monotonic, and axial load. The slenderness ratio, internal longitudinal reinforcement type (steel or FRP bars), and axial cyclic loading effects on the behaviour of FRP confined concrete long columns, however, have received only limited research attention. To address such knowledge gaps, this study aimed at investigating the behaviour of the CFFT long columns internally reinforced with steel or FRP bars tested under monotonic and cyclic axial loading. A total of ten reinforced concrete (RC) and CFFT columns were constructed and tested until failure. All columns had 1900-mm in height and 213-mm in diameter. The investigated parameters were: i) the effect of internal reinforcement type (steel, glass FRP (GFRP), or carbon FRP (CFRP)) and amount, ii) GFRP tube thicknesses, and iii) nature of loading (i.e. monotonic and cyclic). The effect of the different parameters on the axial behaviour of the tested columns is presented and discussed. The research work presented in this dissertation has resulted in one paper submitted to the Elsevier Journal of Engineering Structures (manuscript ID: ENGSTRUCT-D-15-01381) and one accepted conference paper submitted to the 5 th International Structural Specialty Conference (CSCE 2016), London, Ontario, June 1st - 4th, 2016. The experimental test results showed that the CFFT columns reinforced with GFRP bars exhibited similar responses compared to their counterparts reinforced with steel bars with no significant difference in terms of ultimate axial strength and strain capacities. The GFRP tubes provided significant confinement of the tested specimens attributing to shift the mode of failure from axially dominated material failure to flexural-dominated instability failure. The results also indicated that the plastic strains of the FRP-reinforced CFFT columns was linearly proportional to the envelop unloading strains (εun,env). The relationship depended little on level of confinement, but strongly on the longitudinal reinforcement amount and type, particularly when εun,env > 0.0035. On the other hand, an analytical investigation was conducted to examine the validity of the available design provisions for predicting the ultimate load capacity of tested columns. The results of the analysis were compared with the experimental values. It was found that the ACI 440.R1 (2015), CSA S806 (2012), and CSA S6-06 (2010) design provisions provided higher conservative results for the GFRP-reinforced control specimens than that of steel-reinforced specimen. This might be due to neglecting the contribution of the compressive resistance of the GFRP bars to the axial carrying capacity. Furthermore, for FRP-reinforced CFFT columns, the ACI 440.2R (2008), CSA S806 (2012), and CSA S6-06 (2010) provisions results over the experimental results were an average of 1.68±0.31, 1.57±0.18, and 1.72±0.35 with a COV of 18.4%, 11.3%, and 20.5%, respectively. By considering the confinement codes limits, the CSA S806 (2012) showed better correlation for the ultimate carrying capacity based on the average than the CSA S6-06 (2010) and ACI 440.2R (2008), particularly for specimens cast with tube Type B. / Résumé : L'industrie de la construction exprime une grande demande pour les structures innovantes et durables tels que les tabliers de ponts et les quais, les pieux et les poteaux. Plusieurs structures en béton armé sont soumises à des sels de déglaçage et à des environnements marins qui exigent un entretien coûteux. Les polymères renforcés de fibres (PRF) ont récemment été reconnus en tant que matériau de construction viable pour la réparation, la réhabilitation ou la construction de nouvelles infrastructures vieillissantes en particulier celles exposées à des conditions d'environnement sévères. Le concept prometteur du système de tube rempli de béton PRF (CFFT), qui peut être encore renforcé avec de l'acier ou des barres en PRF, a amorcé un grand intérêt parmi les chercheurs durant la dernière décennie. La technique CFFT a été utilisée avec succès dans les différents éléments de structure en béton tels que les colonnes et les poutres de ponts et aussi comme des pieux pour les structures marines. Le tube en PRF agit comme un coffrage structural sur place, un renforcement non corrosif pour le béton en flexion et au cisaillement en utilisant l'orientation des fibres multidirectionnelle, fournit un confinement au béton en compression, et le béton est protégé de toute intrusion d'humidité des agents corrosifs qui, autrement, pourraient détériorer le noyau de béton (ACI 440. R-07 (2007)). L’utilisation des barres de PRF au lieu de barres d'acier conventionnelles dans les colonnes CFFT peut fournir un pas en avant pour développer un nouveau système structurel. Néanmoins, le comportement axial des barres en PRF comme armatures longitudinales dans les membrures en compression n'a pas encore été exploré, en particulier pour les colonnes CFFT. À ce jour, la plupart des études expérimentales effectuées sur les colonnes en béton confinés de PRF, ont considéré des cylindres en béton, courts, à petite échelle non armés, et testés sous un charge concentrique, monotone, et axiale. Le rapport d'élancement, le renfort longitudinal interne (acier ou barres en PRF), et les effets du chargement axial cyclique sur le comportement des colonnes élancées de béton confinés et en PRF, ont connu une recherche limitée. Pour combler ce manque de connaissance, cette étude vise à étudier le comportement des colonnes élancées CFFT armé en acier ou en barres de PRF testées sous charges axiales monotones et cycliques. Un total de dix colonnes en béton armé (RC) et CFFT été fabriquées et testées jusqu'à la rupture. Toutes les colonnes ont 1900 mm de hauteur et 213 mm de diamètre. Les paramètres étudiés sont les suivants: i) l'effet de type de renforcement interne et la quantité de renforcement, ii) les épaisseurs de tubes PRV, et iii) le type de chargement (monotone et cyclique). L'effet des variables considérées sur le comportement axial des colonnes testées dans le travail expérimental est présenté et discuté. Le travail de recherche présenté dans cette analyse a fait l’objet d’un article scientifique soumis à Elsevier Journal of Engineering Structures (manuscrit ID: ENGSTRUCT-D-15-01381) et un article lors d’une conférence acceptée soumis à la 5ième International Structural Specialty Conference (CSCE 2016), London, Ontario, Juin 1er - 4ième, 2016. Les résultats des essais expérimentaux ont montré que les colonnes CFFT renforcées de barres en PRFV présentaient des réponses similaires par rapport à leurs homologues renforcées avec des barres d'acier sans différence significative en termes de capacité ultime de résistance axiale et de déformation. Les tubes en PRFV fournissent un confinement significatif des échantillons testés attribuant à changer le mode de rupture, c’est-à-dire d’une rupture des matériaux axialement à une rupture d’instabilité en flexion. En outre, l'augmentation de l'épaisseur du tube en PRFV de 2,9 à 6,4 mm améliore les rapports de résistance et de déformation de 25 % et 12 %, respectivement. Les résultats indiquent également que les déformations plastiques des colonnes renforcées de PRF sont linéairement proportionnelles aux enveloppes de tension de déchargement (εde,env). La relation dépend un peu du niveau de confinement, mais fortement de la quantité et du type de renfort longitudinal, en particulier lorsque εde,env > 0,0035. D'autre part, une investigation a été menée pour examiner la validité des dispositions de conception disponibles pour prédire la capacité de la charge ultime des colonnes testées. Les résultats de l'analyse ont été comparés avec les valeurs expérimentales. Il a été constaté que les prévisions de l'ACI 440.R1 (2015), CSA S806 (2012), et CSA S6-06 (2010) ont fourni des résultats conservateurs plus élevés pour les échantillons de contrôle en PRFV que celui de l'échantillon d'acier. Cela peut être dû à la négligence de la contribution de la résistance à la compression des barres de PRFV à la capacité de charge axiale. En outre, pour les colonnes de CFFT renforcées de PRF, les prévisions de l'ACI 440.2R (2008), du CSA S806 (2012), et du CSA S6-06 (2010) étaient de 1,68 ± 0,31, 1,57 ± 0,18 et 1,72 ± 0,35 avec un COV de 18,4 %, 11,3%, et 20,5%, respectivement. En considérant les limites des codes de confinement, le code CSA S806 (2012) a révélé les meilleures prévisions pour la capacité de charge ultime basée sur la moyenne que celui du code CSA S6-06 (2010) et de l’ACI 440.2R (2008), en particulier pour les échantillons réalisés avec des tubes de Type B.

Page generated in 0.0133 seconds