• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Behavior of carbon fiber reinforced polymer (CFRP) anchors strengthening reinforced concrete structures

Sun, Wei, 1982- 09 February 2015 (has links)
Carbon Fiber Reinforcement Polymer (CFRP) materials are widely used to strengthen reinforced concrete structures because they are light weight, have high strength, and are relatively easy to install. In strengthening applications, CFRP strips are typically attached to the concrete surface using epoxy resin with fibers oriented in the direction needing additional tensile strength. However, if CFRP strips rely exclusively on bond strength with concrete, only 40% to 50% of the CFRP tensile strength can be developed before debonding occurs. In order to fully develop the tensile strength of CFRP strips, some form of anchorage is needed. CFRP anchors can be applied with relative ease and have recently been shown to provide effective anchorage of CFRP strips to concrete members. In many cases, however, current anchorage details may resulting in fracture or failure of CFRP anchors prior to developing the full strength of CFRP strips. Many design parameters, the effects of which are not well understood, can affect the behavior and strength of CFRP anchors. Moreover, previous studies have demonstrated that the quality of installation can influence anchor strength substantially. The objectives of the study presented are to: 1) provide engineers with design guidelines for CFRP anchors, and 2) deliver a reliable test for controlling the quality of installation and materials of CFRP anchorage systems. In all, 39 tests on 6”×6”×24” rectangular concrete beams were conducted to study the influence of five parameters on CFRP anchor strength and effectiveness: 1) the width of the CFRP strip being developed, 2) the material ratio of CFRP anchor to CFRP strip, 3) the concrete strength, 4) the length/angle of anchor fan, and 5) the bond between CFRP strip and concrete (bonded/unbonded). The same tests also served to develop the test methodology for quality control of the CFRP anchorage system. Based on experimental results, guidelines for designing CFRP anchors are proposed. A test specimen and methodology are also proposed for qualifying CFRP materials and anchorage-system installations. A Finite Element (FE) formulation was selected to provide a computational tool that is suited for simulating the behavior of CFRP strips and CFRP anchors. The ability of the selected FE formulation to reproduce the effects on behavior of varying the anchor-material ratio, concrete strength, length of anchor fan, and bond conditions was investigated. Six FE simulations were built by adjusting simulation parameters and comparing results with six experimental tests. Comparisons between experimental and numerical results indicate that the proposed FE formulation and parameter selections reproduced load-deflection and local strain behaviors with high fidelity. / text
2

Comparative seismic behavior the retrofit of 60year old hospital between CFRP materials and concrete walls by nonlinear static analysis

Criales, Xiomara, Altamirano, Anilú, Huaco, Guillermo 01 January 2022 (has links)
The Casimiro Ulloa Hospital is a confined masonry structure more than 60 years old that does not satisfy the requirements of the Peruvian seismic code E.030 and it is located at high seismic zone. Therefore, this hospital is susceptible to collapse and becomes an essential deficient structure. Therefore, the present study is based on a comparative analysis between reinforced concrete wall and CFRP sheets through the nonlinear Push Over method in order to obtain which is the best reinforcement in structural capacity. The reinforcement with eight L-shaped concrete walls of 15 cm thick located at the corners of the structure, increased the strength of the hospital by 115% in longitudinal direction (Axis X) and 108% in transversal direction (Axis Y), and also increased the ductility by 3% and 117% in the directions respectively. The other reinforcement was carried out with CFRP sheets and anchors. The sheets were designed with a width of 9 inches and were placed in an X-shape in the masonry load-bearing walls and the anchors were implemented in the corners of the laminate walls in order to ensure adequate load transfer between the sheets and the surface. This reinforcement increased the strength of the structure by 345% in axis X and 150% in axis Y and increased the ductility by 59% in longitudinal direction and 331% in transversal direction.
3

Quality control test for carbon fiber reinforced polymer (CFRP) anchors for rehabilitation

Huaco Cárdenas, Guillermo David 21 September 2010 (has links)
Different strategies can be used to repair, rehabilitate and strengthen existing structures. Techniques based on Fiber Reinforced Polymer (FRP) materials appear to be innovative alternatives to traditional solutions because of their high tensile strength, light, weight, and ease of installation. One of the most common and useful FRPs is Carbon Fiber Reinforced Polymer (CFRP) used in sheets and anchors attached on the concrete surface to strengthen the section through addition of tensile capacity. The purpose of this study was develop a technique for assesses the strength of anchors for quality control purpose. However, to transfer tensile capacity to a concrete surface, the sheets are bonded to the surface with epoxy adhesive. As tension increase, CFRP sheets lose adherence of the epoxy from the concrete surface and finally debond. To avoid this failure, CFRP anchors are applied in addition at the epoxy. The CFRP anchors allow the CFRP sheets to utilize their full tensile capacity and maximize the material efficiency of the CFRP retrofit. The number and size of anchors play a critical role. However the capacity of CFRP anchors has not been investigated extendedly. A methodology for assessing the quality of CFRP anchors was developed using plain concrete beams and reinforced externally with CFRP sheets attached with epoxy and CFRP anchors. Applying load to the beam, allowed the development a tensile force in the CFRP sheets and a shear force on the CFRP anchors. The shear forces in the CFRP anchors were defined by the load applied to the beam and compared with forces based on measured stress in CFRP sheets. / text
4

Shear strengthening of reinforced concrete beams with carbon fiber reinforced polymer (CFRP) under fatigue and sustained loading applications

Satrom, Christopher Neil 29 September 2011 (has links)
Four specimens were tested to evaluate the shear performance of beams with carbon fiber reinforced polymer (CFRP) laminates and CFRP anchors under fatigue and sustained loading applications. The specimens consisted of 24-in. deep T-beams that were constructed and tested at Phil M. Ferguson Structural Engineering Laboratory at the University of Texas at Austin. The specimens were strengthened in shear with CFRP laminates anchored with CFRP anchors. One end of each specimen was strengthened using bonded CFRP laminates while the other end was strengthened using unbonded CFRP laminates. Two specimens were used for fatigue testing and two were used for sustained load testing. For each set of tests, one specimen was strengthened using CFRP laminates prior to cracking and one specimen was strengthened using CFRP laminates following the initial cracking of the specimen. The CFRP laminates showed no signs of deteriorations in strength during fatigue testing, with only small increases in strain occurring in the CFRP laminates during testing. After fatigue loading was completed, the specimens were monotonically loaded to failure. The failure loads were 5 to 15% lower than beams that were not subjected to fatigue loading. Sustained load tests were subjected to a constant midpoint load based on service load requirements for a period of 217 days. CFRP laminates performed well during sustained loading. CFRP strains increased slightly throughout testing, but no signs of deterioration were observed. For both types of tests, specimens strengthened using bonded CFRP laminates demonstrated an increased stiffness resulting in smaller crack widths and lower strains in the internal steel. These benefits were not as great in specimens strengthened after the initial cracking of the specimen. / text
5

Mechanical Properties Of Cfrp Anchorages

Ozdemir, Gokhan 01 February 2005 (has links) (PDF)
Due to inadequate lateral stiffness, many reinforced concrete buildings are highly damaged or collapsed in Turkey after the major earthquake. To improve the behavior of such buildings and to prevent them from collapse, repair and/or strengthening of some reinforced concrete elements is required. One of the strengthening techniques is the use of CFRP sheets on the existing hollow brick masonry infill. While using the CFRP sheets their attachment to both structural and non-structural members are provided by CFRP anchor dowels. In this study, by means of the prepared test setup, the pull-out strength capacities of CFRP anchor dowels are measured. The effects of concrete compressive strength, anchorage depth, anchorage diameter, and number of fibers on the tensile strength capacity of CFRP anchor dowel are studied.

Page generated in 0.0393 seconds