• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Behavior of reinforced concrete beams strengthened using CFRP sheets with superior anchorage devices

Zaki, Mohammed Ameen January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Hayder A. Rasheed / The use of carbon fiber reinforced polymer (CFRP) anchors can improve the performance of reinforced concrete (RC) beams strengthened in flexure with CFRP sheets. This improvement results from delaying or controlling the debonding of FRP sheets at failure. In this research, six full-scale T beams and six full-scale rectangular beams are prepared and tested as two separate series. All the specimens are strengthened identically using three layers of unidirectional CFRP sheets and one layer of bidirectional CFRP sheet. The first strengthened beam in each series is anchored with side GFRP bars inserted longitudinally to both sides of the beam. The second strengthened beam in each series is anchored with GFRP patches applied to both sides of the beam. CFRP spike anchors are utilized for the other beams in the two series. The third beam in each series is secured with CFRP spike anchors of 16 mm diameter at 140 mm spacing along the shear span. The fourth strengthened beam in each series is anchored with CFRP spike anchors of 19 mm diameter at 203 mm spacing along the shear span. Four CFRP anchors are applied to each shear span of the fifth beam in each series with 16 mm- diameter (spaced at 406 mm) to secure the flexural CFRP sheets. An end CFRP anchorage technique is considered for the last beam in each series, which includes installing one CFRP spike anchor placed at 76 mm from the free edge of CFRP sheets. The beams were tested under four-point bending until failure and the results for each series are evaluated. In addition, the outcome is compared with other anchorage techniques that have been examined by some researchers utilizing the same beam geometry and properties. The experimental testing and nonlinear analysis showed improvement in the flexural performance of anchored beams compared with those strengthened beams without anchorage. By attaining debonding or rupture failure modes for the T beams and concrete crushing failure mode for the rectangular specimens, the ultimate sectional force capacity is achieved. Accordingly, the results prove that the anchors offer an effective solution against premature debonding failure.
2

Comparative seismic behavior the retrofit of 60year old hospital between CFRP materials and concrete walls by nonlinear static analysis

Criales, Xiomara, Altamirano, Anilú, Huaco, Guillermo 01 January 2022 (has links)
The Casimiro Ulloa Hospital is a confined masonry structure more than 60 years old that does not satisfy the requirements of the Peruvian seismic code E.030 and it is located at high seismic zone. Therefore, this hospital is susceptible to collapse and becomes an essential deficient structure. Therefore, the present study is based on a comparative analysis between reinforced concrete wall and CFRP sheets through the nonlinear Push Over method in order to obtain which is the best reinforcement in structural capacity. The reinforcement with eight L-shaped concrete walls of 15 cm thick located at the corners of the structure, increased the strength of the hospital by 115% in longitudinal direction (Axis X) and 108% in transversal direction (Axis Y), and also increased the ductility by 3% and 117% in the directions respectively. The other reinforcement was carried out with CFRP sheets and anchors. The sheets were designed with a width of 9 inches and were placed in an X-shape in the masonry load-bearing walls and the anchors were implemented in the corners of the laminate walls in order to ensure adequate load transfer between the sheets and the surface. This reinforcement increased the strength of the structure by 345% in axis X and 150% in axis Y and increased the ductility by 59% in longitudinal direction and 331% in transversal direction.
3

Shear assessment and strengthening of reinforced concrete T-beams with externally bonded CFRP sheets

Brindley, Monika January 2018 (has links)
Existing reinforced concrete bridges may be deemed inadequate to carry the ever-increasing traffic loads according to the current codes and standards before they reach the end of their design life. It may therefore be required to either strengthen or replace these structures, which can be costly and causes disruptions to the infrastructure. This work investigates experimentally the possibilities to extend the useful life of existing reinforced concrete slab-on-beam structures deficient in shear by means of structural strengthening with fibre-reinforced polymers (FRP). The experimental campaign involved mechanical testing of ten full-scale T-beam specimens, representative of typical existing slab-on-beam bridges. Two sizes of test specimen were used to investigate the effect of size on the ultimate shear capacity of the beams. The investigated shear-strengthening configurations included externally bonded carbon fibre reinforced polymer (CFRP) sheets in a U-wrap configuration with and without end-anchorage and deep embedded CFRP bars. Unstrengthened control specimens were also tested to provide baseline for comparison. The results from the experimental programme revealed that while the deep embedment strengthening solution provides an increase in shear capacity of up to 50%, the strengthening with CFRP U-wraps results in reduced capacity compared with the underlying control beam. This presents a major implication in terms of safe design predictions of shear capacity of reinforced concrete T-beams strengthened with CFRP sheets as this is the most commonly used shear-strengthening scheme in practice. The study also demonstrated that greater contribution from the externally bonded CFRP U-wraps can be achieved using end-anchorage systems, which delay the debonding of the CFRP. The applicability of current codes of standards and guidelines was studied as well as appropriateness of using advanced numerical methods for assessment of existing reinforced concrete structures. It was found that while the standards used for assessment greatly under-predict the shear capacity, the guidelines for FRP-strengthened beams either under- or over-predict the shear capacity of the tested beams. More accurate predictions are possible using advanced fracture mechanics-based methods for both the unstrengthened as well as the strengthened beams.
4

Sagging and hogging strengthening of continuous reinforced concrete beams using CFRP sheets.

El-Refaie, S.A., Ashour, Ashraf, Garrity, S.W. 07 1900 (has links)
yes / This paper reports the testing of 11 reinforced concrete (RC) two-span beams strengthened in flexure with externally bonded carbon fiber-reinforced polymer (CFRP) sheets. The beams were classified into two groups according to the arrangement of the internal steel reinforcement. Each group included one unstrengthened control beam. The main parameters studied were the position, length, and number of CFRP layers. External strengthening using CFRP sheets was found to increase the beam load capacity. All strengthened beams exhibited less ductility compared with the unstrengthened control beams, however, and showed undesirable sudden failure modes. There was an optimum number of CFRP layers beyond which there was no further enhancement in the beam capacity. Extending the CFRP sheet length to cover the entire hogging or sagging zones did not prevent peeling failure of the CFRP sheets, which was the dominant failure mode of beams tested.

Page generated in 0.0448 seconds