91 |
The AdS/CFT correspondence and generalized geometryGabella, Maxime January 2011 (has links)
The most general AdS$_5 imes Y$ solutions of type IIB string theory that are AdS/CFT dual to superconformal field theories in four dimensions can be fruitfully described in the language of generalized geometry, a powerful hybrid of complex and symplectic geometry. We show that the cone over the compact five-manifold $Y$ is generalized Calabi-Yau and carries a generalized holomorphic Killing vector field $xi$, dual to the R-symmetry. Remarkably, this cone always admits a symplectic structure, which descends to a contact structure on $Y$, with $xi$ as Reeb vector field. Moreover, the contact volumes of $Y$, which can be computed by localization, encode essential properties of the dual CFT, such as the central charge and the conformal dimensions of BPS operators corresponding to wrapped D3-branes. We then define a notion of ``generalized Sasakian geometry'', which can be characterized by a simple differential system of three symplectic forms on a four-dimensional transverse space. The correct Reeb vector field for an AdS$_5$ solution within a given family of generalized Sasakian manifolds can be determined---without the need of the explicit metric---by a variational procedure. The relevant functional to minimize is the type IIB supergravity action restricted to the space of generalized Sasakian manifolds, which turns out to be just the contact volume. We conjecture that this contact volume is equal to the inverse of the trial central charge whose maximization determines the R-symmetry of the dual superconformal field theory. The power of this volume minimization is illustrated by the calculation of the contact volumes for a new infinite family of solutions, in perfect agreement with the results of $a$-maximization in the dual mass-deformed generalized conifold theories.
|
92 |
Role bank v boji proti legalizaci výnosů z trestné činnosti a financování terorismu / The role of banks in the fight against money laundering and financing of terrorismPultarová, Hana January 2016 (has links)
Money laundering and terrorist financing are serious problems that may not only disrupt the stability and reputation of financial institutions, but also affect a wide range of individuals. Therefore, this kind of conduct can be punished as a crime, including the active involvement of banks in money laundering. However, the diploma thesis focuses mainly on preventive measures introduced by the provisions of administrative law. The role of a well-functioning banking system is essential for the effective suppression of money laundering and financing of terrorism. Banks are the most frequent reporters of suspicious transactions and the bank services are used by wide range of persons. The role of banks is mainly determined by their designation as obliged entities by the Act no. 253/2008 Coll., on certain measures against the legalization of proceeds of crime and terrorist financing. The obligations arising out of this act are put into context with the Czech Banking Act and with regulations governing payments and implementation of international sanctions, including directly applicable laws of the European Union. The importance of the bank services is also caused by the regulation of cash payments. In connection with the activities of banks, the thesis reflects selected changes that will be introduced by...
|
93 |
Perturbações e modos quasenormais de buracos negros AdSMorgan, Jaqueline January 2011 (has links)
Orientador: Vilson Tonin Zanchin / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2011
|
94 |
AdS/CFT duality involving deformed PP-waves from the Lunin-Maldacena backgroundSmolic, Milena 13 August 2008 (has links)
ABSTRACT WOULD NOT LOAD ON DSpace
|
95 |
GPPZ and the Holographic Triforce against ScalarsVaduret, Jean-François January 2019 (has links)
We use gauge-invariant cosmological perturbation theory to compute one-point functions of active and inert scalar fields of the GPPZ RG-flow in AdS5. Linearized Einstein equations are computed and made gauge-invariant for D-dimensional Euclidean domain-wall geometry. We briefly review the procedure of holographic renormalization for the GPPZ RG-flow in AdS5 to get different one-point functions. The source-dependant vev of the operator dual to the ∆ = 3 active scalar field in the GPPZ solution is computed and agrees with literature. We also find the source-dependant one-point function of the operator dual to the ∆ = 3 inert scalar.
|
96 |
Duality symmetries in string-inspired supergravity: T-dualities and the gauge/gravity correspondenceWhiting, Catherine Ann 01 May 2015 (has links)
Motivated by the AdS/CFT correspondence, new supersymmetric solutions to Type IIB and Type IIA supergravity are presented. These solutions contain $AdS_5$ or $AdS_4$ factors and are generated using T-duality symmetries of supergravity. The technique used to generate these solutions consists of performing a series of non-Abelian and Abelian T-dualities, sometimes with coordinate shifts in-between, to Freund-Rubin type seed backgrounds. An added bonus of the gauge fixing procedure inherent in non-Abelian T-Duality is the freedom to generate backgrounds with extra free parameters, some examples of which are presented. Aspects of the dual field theories of these new solutions are analyzed using holography techniques. The supersymmetry of these new backgrounds is also discussed.
In addition to supergravity backgrounds with AdS, the study of generalized Calabi-Yau manifolds in the context of flux compactifications is briefly reviewed. The particular case of the resolved cone over $Y^{p,q}$ and its admission of generalized SU(3) structure solutions is examined. Contrary to geometries with $AdS$ factors, whose field theory duals are conformal field theories, these types of geometries can be phenomenologically interesting to study, as their gauge theory duals are minimally supersymmetric and confining, thus they could someday help aid our understanding of strongly-coupled QCD (Quantum Chromodynamics).
|
97 |
AdS/CFT Correspondence and Hydrodynamics of Relativistic Heavy Ion CollisionsAlsup, James Ethan 01 August 2010 (has links)
The experiments performed at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab have discovered a state of matter called the strongly coupled quark-gluon plasma (sQGP). The strong coupling has limited the ability of the standard theory to describe such matter, namely Quantum Chromodynamics (QCD). However, string theory's anti-de Sitter/conformal field theory (AdS/CFT) correspondence has provided a new way to study the situation and in an analytical manner. So far, hydrodynamic properties of RHIC's plasma, such as elliptic flow and longitudinal expansion, have been seen to follow from classical supergravity calculations. In this dissertation I discuss some of the field's development as well as the research done by the author and collaborators.
|
98 |
Analytical and experimental study on slender concrete-filled steel tube columns and beam-columnsPerea, Tiziano 15 November 2010 (has links)
The use of composite steel-concrete columns and beam-columns in many structural systems is increasing globally due to the intrinsic synergy when these materials are designed and detailed together properly. However, limited test data are available to justify the structural system response factors and comprehensive design equations in current design specifications. This research, through the testing of 18 full-scale, slender concrete-filled steel tube (CFT) beam-columns, attempts to address the latter need. The circular and rectangular CFT specimens tested for this research are by far the longest and the most slender full-scale CFT members tested worldwide. These CFT specimens were subjected to a complex load protocol that includes pure compression, uniaxial and biaxial bending combined with compression, pure torsion, and torsion combined with compression. In addition, data from the hydrostatic pressure on the steel tubes due to the fresh concrete at casting was evaluated. The single most important contribution of this research is the clarification of the interaction between strength and stability in slender composite concrete-filled columns and beam-columns. Parallel to the experimental study, advanced computational analyses were carried out to calibrate material and element models that characterize the salient features of the observed CFT response, such as steel local buckling and residual stresses, concrete confinement, stability effects, strength, and stiffness degradation, among others. Based on the observed behavior, simplified guidelines for the computation of the strength and stiffness parameters for CFT columns and beam-columns are proposed for design purposes.
|
99 |
Effect of Curvature Squared Corrections to Gravitational Action on Viscosity-to-Entropy Ratio of the Dual Gauge TheoryPetrov, Pavel January 2012 (has links)
In this thesis we study the properties of strongly-coupled large-N conformal field theories (CFT’s) using AdS/CFT correspondence. Chapter 1 serves as an introduction. In Chapter 2 we study the shear viscosity of strongly-coupled large-N conformal field theories. We find that it is affected by \(R^2\) corrections to the AdS action and present an example of 4D theory in which the the conjectured universal lower bound on viscosity-to-entropy ratio \(\eta/s > 1/4 \pi\) is violated by 1/N corrections. This fact proves that there is no universal lower bound of \(1/4 \pi\) on viscosity-to-entropy ratio and may be relevant for the studies of QCD quark-gluon plasma for which this ratio is experimentally found to be close to \(1/4 \pi\). In Chapter 3 we study the formation of the electron star in 4D AdS space. We show that in a gravity theory with charged fermions a layer of charged fermion fluid may form at a finite distance from the charged black hole. We show that these “electron stars” are candidate gravity duals for strongly interacting fermion systems at finite density and finite temperature. Entropy density for such systems scales as \(s \sim T^{2/z}\) at low temperatures as expected from IR criticality of electron stars solutions. / Physics
|
100 |
AdS/CFT, Black Holes, And FuzzballsZadeh, Aida 09 January 2014 (has links)
In this thesis we investigate two different aspects of the AdS/CFT correspondence. We first investigate the holographic AdS/CMT correspondence. Gravitational backgrounds in d+2 dimensions have been proposed as holographic duals to Lifshitz-like theories describing critical phenomena in d+1 dimensions with critical exponent z>1. We numerically explore a dilaton-Einstein-Maxwell model admitting such backgrounds as solutions. We show how to embed these solutions into AdS space for a range of values of z and d.
We next investigate the AdS3/CFT2 correspondence and focus on the microscopic CFT description of the D1-D5 system on T^4*S_1. In the context of the fuzzball programme, we investigate deforming the CFT away from the orbifold point and study lifting of the low-lying string states. We start by considering general 2D orbifold CFTs of the form M^N/S_N, with M a target space manifold and S_N the symmetric group. The Lunin-Mathur covering space technique provides a way to compute correlators in these orbifold theories, and we generalize this technique in two ways. First, we consider excitations of twist operators by modes of fields that are not twisted by that operator, and show how to account for these excitations when computing correlation functions in the covering space. Second, we consider non-twist sector operators and show how to include the effects of these insertions in the covering space.
Using the generalization of the Lunin-Mathur symmetric orbifold technology and conformal perturbation theory, we initiate a program to compute the anomalous dimensions of low-lying string states in the D1-D5 superconformal field theory. Our method entails finding four-point functions involving a string operator O of interest and the deformation operator, taking coincidence limits to identify which other operators mix with O, subtracting conformal families of these operators, and computing their mixing coefficients. We find evidence of operator mixing at first order in the deformation parameter, which means that the string state acquires an anomalous dimension. After diagonalization this will mean that anomalous dimensions of some string states in the D1-D5 SCFT must decrease away from the orbifold point while others increase.
Finally, we summarize our results and discuss some future directions of research.
|
Page generated in 0.0336 seconds