• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 362
  • 88
  • 70
  • 31
  • 20
  • 12
  • 10
  • 10
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 748
  • 511
  • 193
  • 187
  • 143
  • 127
  • 119
  • 102
  • 87
  • 78
  • 75
  • 67
  • 67
  • 56
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Mapping Template Semantics to SMV

Lu, Yun January 2004 (has links)
Template semantics is a template-based approach to describing the semantics of model-based notations, where a pre-defined template captures the notations' common semantics, and parameters specify the notations' distinct semantics. In this thesis, we investigate using template semantics to parameterize the translation from a model-based notation to the input language of the SMV family of model checkers. We describe a fully automated translator that takes as input a specification written in template semantics syntax, and a set of template parameters, encoding the specification's semantics, and generates an SMV model of the specification. The result is a parameterized technique for model checking specifications written in a variety of notations. Our work also shows how to represent complex composition operators, such as rendezvous synchronization, in the SMV language, in which there is no matching language construct.
32

Totally-self-checking balance checkers and window comparators

Chee, Chong Hin January 1997 (has links)
No description available.
33

Exploiting model structure in CEGAR verification method / Exploiter la structure des modèles pour la vérification par la méthode CEGAR

Chucri, Farès 27 November 2012 (has links)
Cette thèse a eu pour but l'étude et la mise en oeuvre des méthodes de vérification par abstraction pour les modèles AltaRica. A cette effet, une méthode d'abstraction permettant l'utilisation d'une sous approximation de l'espace des états d'un système dans un algorithme CEGAR est présentée. Son utilisation permet d'accélérer l'algorithme CEGAR, ainsi que de réduire les ressources nécessaires lors de la vérification d'un modèle. Nous nous intéressons à une modélisation d'un sous ensemble du langage AltaRica , pour lequel une méthode d'abstraction hiérarchique est décrite, ainsi qu'un algorithme efficace permettant la vérification de contre-exemples issus de cette abstraction. La méthode proposée permet d'abstraire chaque composant de la hiérarchie indépendamment malgré la présence de priorités dans le modèle. Finalement l'implémentation de l'algorithme PCegar dans le model checker Mec 5 est présentée ainsi qu'une analyse de benchmarks sur des modèles académiques et un modèle industriel. / This thesis presents an abstraction verification method for AltaRica models. To this end a CEGAR algorithm that prunes away abstract states and therefore uses an underapproximation of the system state space is proposed. The use of an underapproximation of the abstract state space allow to accelerate the algorithm, and reduce the computational resources required by the algorithm. A CEGAR algorithm for a subset of the AltaRica language is also presented. A hierarchical abstractionscheme and an efficient counter-example analysis method are proposed. The abstraction scheme proposed allow to abstract each component independently despite the presence of priorities in the model. Finally, the implementation of our CEGAR with pruning method is present together with benchmarks on academic and industrial models.
34

Contribution à la vérification d'exigences de sécurité : application au domaine de la machine industrielle / Contribution to safety requirements verification : application to industrial machinery domain

Evrot, Dominique 17 July 2008 (has links)
L’introduction des nouvelles technologies de l’information et de la communication dans les systèmes automatisés entraîne un accroissement de la complexité des fonctions qu’ils supportent. Cet accroissement de la complexité a un impact sur la sécurité des systèmes. En effet, leurs propriétés ne sont plus réductibles aux propriétés de leurs constituants pris isolément mais émergent d’un réseau d’interactions entre ces constituants qui peut être à l’origine de comportements néfastes et difficiles à prévoir. Notre conviction est que le développement sûr de ces systèmes doit combiner des approches pragmatiques orientées « système », qui tiennent compte du facteur d'échelle réel d'une automatisation pour appréhender le fonctionnement global du système et son architecture, avec des approches plus formelles qui permettent de s’assurer que les propriétés intrinsèques des constituants contribuent efficacement au respect des exigences « système » formulées par les utilisateurs. Le travail présenté dans ce mémoire définit donc une approche méthodologique basée sur le formalisme SysML (System Modeling Language) permettant l’identification, la formalisation et la structuration d’exigences globales relatives à un système, puis leur projection, sous forme de propriétés invariantes, sur une architecture de composants. La vérification des exigences de sécurité, repose alors, d’une part, sur un raffinement prouvé (par theroem proving) des exigences « système » permettant d’établir leur équivalence avec un ensemble de propriétés intrinsèques relatives à chacun des composants, et d’autre part, sur la vérification formelle (par model checking) de ces propriétés intrinsèques. / Introduction of new information and communication technology in automated systems leads to a growth of safety functions complexity. System properties are not limited to components properties, they issued from an interactions network that can introduces bad behaviour. Our conviction is that a safe development of such system must involve system oriented approaches in order to apprehend system global behaviour and architecture and more formal approaches allowing verifying that components properties satisfy end users system requirements We define a methodological approach based on SysML formalism (System Modelling Language) allowing global system requirements identification; formalisation and structuring in order to project these requirements on the system components architecture and so obtain local components properties. Then safety requirements verification is based in one hand on proved refinement (using theorem proving) of system requirements to components properties; and, in the other hand, on the formal verification (using model checking) of these components properties.
35

Region Type Checking for Core-Java

Chin, Wei Ngan, Qin, Shengchao, Rinard, Martin C. 01 1900 (has links)
Region-based memory management offers several important advantages over garbage-collected heap, including real-time performance, better data locality and efficient use of limited memory. The concept of regions was first introduced for a call-by-value functional language by Tofte and Talpin, and has since been advocated for imperative and object-oriented languages. Scope memory, a lexical variant of regions, is now a core feature in a recent proposal on Real-Time Specification for Java (RTSJ). In this paper, we propose a region-based memory management system for a core subset of Java. Our region type analysis can completely prevent dangling references and thus is ready to cater for the no-dangling requirement in RTSJ. Our system also supports modular compilation, which is an important feature for Java, but was missing in recent related work. / Singapore-MIT Alliance (SMA)
36

Merging and Consistency Checking of Distributed Models

Sabetzadeh, Mehrdad 26 February 2009 (has links)
Large software projects are characterized by distributed environments consisting of teams at different organizations and geographical locations. These teams typically build multiple overlapping models, representing different perspectives, different versions across time, different variants in a product family, different development concerns, etc. Keeping track of the relationships between these models, constructing a global view, and managing consistency are major challenges. Model Management is concerned with describing the relationships between distributed models, i.e., models built in a distributed development environment, and providing systematic operators to manipulate these models and their relationships. Such operators include, among others, Match, for finding relationships between disparate models, Merge, for combining models with respect to known or hypothesized relationships between them, Slice, for producing projections of models and relationships based on given criteria, and Check-Consistency, for verifying models and relationships against the consistency properties of interest. In this thesis, we provide automated solutions for two key model management operators, Merge and Check-Consistency. The most novel aspects of our work on model merging are (1) the ability to combine arbitrarily large collections of interrelated models and (2) support for toleration of incompleteness and inconsistency. Our consistency checking technique employs model merging to reduce the problem of checking inter-model consistency to checking intra-model consistency of a merged model. This enables a flexible way of verifying global consistency properties that is not possible with other existing approaches. We develop a prototype tool, TReMer+, implementing our merge and consistency checking approaches. We use TReMer+ to demonstrate that our contributions facilitate understanding and refinement of the relationships between distributed models.
37

Abstraction for Verification and Refutation in Model Checking

Wei, Ou 13 April 2010 (has links)
Model checking is an automated technique for deciding whether a computer program satisfies a temporal property. Abstraction is the key to scaling model checking to industrial-sized problems, which approximates a large (or infinite) program by a smaller abstract model and lifts the model checking result over the abstract model back to the original program. In this thesis, we study abstraction in model checking based on \emph{exact-approximation}, which allows for verification and refutation of temporal properties within the same abstraction framework. Our work in this thesis is driven by problems from both practical and theoretical aspects of exact-approximation. We first address challenges of effectively applying symmetry reduction to \emph{virtually} symmetric programs. Symmetry reduction can be seen as a \emph{strong} exact-approximation technique, where a property holds on the original program if and only if it holds on the abstract model. In this thesis, we develop an efficient procedure for identifying virtual symmetry in programs. We also explore techniques for combining virtual symmetry with symbolic model checking. Our second study investigates model checking of \emph{recursive} programs. Previously, we have developed a software model checker for non-recursive programs based on exact-approximating predicate abstraction. In this thesis, we extend it to reachability and non-termination analysis of recursive programs. We propose a new program semantics that effectively removes call stacks while preserving reachability and non-termination. By doing this, we reduce recursive analysis to non-recursive one, which allows us to reuse existing abstract analysis in our software model checker to handle recursive programs. A variety of \emph{partial} transition systems have been proposed for construction of abstract models in exact-approximation. Our third study conducts a systematic analysis of them from both semantic and logical points of view. We analyze the connection between semantic and logical consistency of partial transition systems, compare the expressive power of different families of these formalisms, and discuss the precision of model checking over them. Abstraction based on exact-approximation uses a uniform framework to prove correctness and detect errors of computer programs. Our results in this thesis provide better understanding of this approach and extend its applicability in practice.
38

Merging and Consistency Checking of Distributed Models

Sabetzadeh, Mehrdad 26 February 2009 (has links)
Large software projects are characterized by distributed environments consisting of teams at different organizations and geographical locations. These teams typically build multiple overlapping models, representing different perspectives, different versions across time, different variants in a product family, different development concerns, etc. Keeping track of the relationships between these models, constructing a global view, and managing consistency are major challenges. Model Management is concerned with describing the relationships between distributed models, i.e., models built in a distributed development environment, and providing systematic operators to manipulate these models and their relationships. Such operators include, among others, Match, for finding relationships between disparate models, Merge, for combining models with respect to known or hypothesized relationships between them, Slice, for producing projections of models and relationships based on given criteria, and Check-Consistency, for verifying models and relationships against the consistency properties of interest. In this thesis, we provide automated solutions for two key model management operators, Merge and Check-Consistency. The most novel aspects of our work on model merging are (1) the ability to combine arbitrarily large collections of interrelated models and (2) support for toleration of incompleteness and inconsistency. Our consistency checking technique employs model merging to reduce the problem of checking inter-model consistency to checking intra-model consistency of a merged model. This enables a flexible way of verifying global consistency properties that is not possible with other existing approaches. We develop a prototype tool, TReMer+, implementing our merge and consistency checking approaches. We use TReMer+ to demonstrate that our contributions facilitate understanding and refinement of the relationships between distributed models.
39

Abstraction for Verification and Refutation in Model Checking

Wei, Ou 13 April 2010 (has links)
Model checking is an automated technique for deciding whether a computer program satisfies a temporal property. Abstraction is the key to scaling model checking to industrial-sized problems, which approximates a large (or infinite) program by a smaller abstract model and lifts the model checking result over the abstract model back to the original program. In this thesis, we study abstraction in model checking based on \emph{exact-approximation}, which allows for verification and refutation of temporal properties within the same abstraction framework. Our work in this thesis is driven by problems from both practical and theoretical aspects of exact-approximation. We first address challenges of effectively applying symmetry reduction to \emph{virtually} symmetric programs. Symmetry reduction can be seen as a \emph{strong} exact-approximation technique, where a property holds on the original program if and only if it holds on the abstract model. In this thesis, we develop an efficient procedure for identifying virtual symmetry in programs. We also explore techniques for combining virtual symmetry with symbolic model checking. Our second study investigates model checking of \emph{recursive} programs. Previously, we have developed a software model checker for non-recursive programs based on exact-approximating predicate abstraction. In this thesis, we extend it to reachability and non-termination analysis of recursive programs. We propose a new program semantics that effectively removes call stacks while preserving reachability and non-termination. By doing this, we reduce recursive analysis to non-recursive one, which allows us to reuse existing abstract analysis in our software model checker to handle recursive programs. A variety of \emph{partial} transition systems have been proposed for construction of abstract models in exact-approximation. Our third study conducts a systematic analysis of them from both semantic and logical points of view. We analyze the connection between semantic and logical consistency of partial transition systems, compare the expressive power of different families of these formalisms, and discuss the precision of model checking over them. Abstraction based on exact-approximation uses a uniform framework to prove correctness and detect errors of computer programs. Our results in this thesis provide better understanding of this approach and extend its applicability in practice.
40

Explicit or Symbolic Translation of Linear Temporal Logic to Automata

Rozier, Kristin Yvonne 24 July 2013 (has links)
Formal verification techniques are growing increasingly vital for the development of safety-critical software and hardware in practice. Techniques such as requirements-based design and model checking for system verification have been successfully used to verify systems for air traffic control, airplane separation assurance, autopilots, CPU logic designs, life-support, medical equipment, and other functions that ensure human safety. Formal behavioral specifications written early in the system-design process and communicated across all design phases increase the efficiency, consistency, and quality of the system under development. We argue that to prevent introducing design or verification errors, it is crucial to test specifications for satisfiability. We advocate for the adaptation of a new sanity check via satisfiability checking for property assurance. Our focus here is on specifications expressed in Linear Temporal Logic (LTL). We demonstrate that LTL satisfiability checking reduces to model checking and satisfiability checking for the specification, its complement, and a conjunction of all properties should be performed as a first step to LTL model checking. We report on an experimental investigation of LTL satisfiability checking. We introduce a large set of rigorous benchmarks to enable objective evaluation of LTL-to-automaton algorithms in terms of scalability, performance, correctness, and size of the automata produced. For explicit model checking, we use the Spin model checker; we tested all LTL-to-explicit automaton translation tools that were publicly available when we conducted our study. For symbolic model checking, we use CadenceSMV, NuSMV, and SAL-SMC for both LTL-to-symbolic automaton translation and to perform the satisfiability check. Our experiments result in two major findings. First, scalability, correctness, and other debilitating performance issues afflict most LTL translation tools. Second, for LTL satisfiability checking, the symbolic approach is clearly superior to the explicit approach. Ironically, the explicit approach to LTL-to-automata had been heavily studied while only one algorithm existed for LTL-to-symbolic automata. Since 1994, there had been essentially no new progress in encoding symbolic automata for BDD-based analysis. Therefore, we introduce a set of 30 symbolic automata encodings. The set consists of novel combinations of existing constructs, such as different LTL formula normal forms, with a novel transition-labeled symbolic automaton form, a new way to encode transitions, and new BDD variable orders based on algorithms for tree decomposition of graphs. An extensive set of experiments demonstrates that these encodings translate to significant, sometimes exponential, improvement over the current standard encoding for symbolic LTL satisfiability checking. Building upon these ideas, we return to the explicit automata domain and focus on the most common type of specifications used in industrial practice: safety properties. We show that we can exploit the inherent determinism of safety properties to create a set of 26 explicit automata encodings comprised of novel aspects including: state numbers versus state labels versus a state look-up table, finite versus infinite acceptance conditions, forward-looking versus backward-looking transition encodings, assignment-based versus BDD-based alphabet representation, state and transition minimization, edge abbreviation, trap-state elimination, and determinization either on-the-fly or up-front using the subset construction. We conduct an extensive experimental evaluation and identify an encoding that offers the best performance in explicit LTL model checking time and is constantly faster than the previous best explicit automaton encoding algorithm.

Page generated in 0.0302 seconds