• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 309
  • 40
  • 31
  • 22
  • 14
  • 9
  • 8
  • 4
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 552
  • 552
  • 552
  • 129
  • 119
  • 119
  • 88
  • 78
  • 70
  • 69
  • 67
  • 67
  • 57
  • 50
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Chemical Vapor Deposition of Cobalt-based Thin Films for Microelectronics

Yang, Jing January 2013 (has links)
In microelectronics, the device size continues to shrink to improve the performance and functionality, which sets technical challenges for the integrated circuit (IC) fabrication. Novel materials and processing techniques are developed to maintain excellent device performances and structural reliability. Cobalt-based thin films possess numerous applications in microelectronics with the potential to enhance the device performance and reliability. This thesis explores the fabrication, characterization and application of cobalt-based thin films for microelectronics. Chemical vapor deposition (CVD) technique has been applied for depositing cobalt-based thin films, because CVD can produce high quality thin films with excellent conformality in complex 3D architectures required for future microelectronics. / Engineering and Applied Sciences
262

Dynamic feature analysis of an industrial PECVD tool with connection to operation-dependent degradation modeling

Bleakie, Alexander Q. 23 December 2010 (has links)
An analysis that is based on the monitoring of dynamic features from in-situ sensors of an industrial PECVD tool is presented. Linear Discriminant Analysis is used to determine which features are the most sensitive to various changes in the tool condition. The concept of Confidence Values (CVs) is used to quantify statistical changes of these dynamic features as the condition of the tool changed. Two data sets were collected from a PECVD tool in the facilities of a well-known equipment supplier. Dynamic features coming from the RF plasma power and matching capacitors’ sensors are shown to be sensitive to various changes in the cleaning cycles for Si-N, Si-O₂, and TEOS depositions. Quantifying the statistical distributions of the sensitive sensor features during tool condition changes is important for determining which sensor features are necessary to monitor in order to predict the tool chamber health. Results show that these RF plasma sensors could be used to track changes inside the tool chamber. / text
263

Χημική εναπόθεση μικροκρυσταλλικού υδρογονωμένου πυριτίου με πλάσμα υψηλής πυκνότητας ηλεκτρονίων

Δημητρακέλλη, Παναγιώτης 27 May 2014 (has links)
Το μικροκρυσταλλικό υδρογονωμένο πυρίτιο (μc-Si:H) βρίσκει εφαρμογή ως ενδογενής ημιαγωγός σε φωτοβολταϊκές ιδιοσυσκευές λεπτών υμενίων πυριτίου απλής και ανάστροφης δομής (tandem). Η τυπική μέθοδος παρασκευής του υλικού είναι η χημική εναπόθεση ατμών ενισχυμένη με πλάσμα (Plasma Enhanced Chemical Vapor Deposition – PECVD) με χρήση χωρητικών εκκενώσεων υψηλής αραίωσης σιλανίου (SiH4) σε υδρογόνο (H2). Εξαιτίας της χαμηλής απορρόφησης στο ορατό φάσμα απαιτείται αρκετά μεγάλο πάχος της ενδογενούς στοιβάδας του μc-Si:H, ωστόσο με τα υπάρχοντα δεδομένα οι ρυθμοί εναπόθεσης είναι αρκετά χαμηλοί με αποτέλεσμα οι χρόνοι εναπόθεσης να είναι απαγορευτικοί για τη βιομηχανία. Έτσι γίνεται επιτακτική η ανάγκη για υψηλούς ρυθμούς εναπόθεσης (> 5 Å/s) ούτως ώστε να είναι εφικτή η παραγωγή φωτοβολταϊκών κελιών χαμηλού κόστους. Σκοπός της παρούσας εργασίας είναι η μελέτη εναλλακτικών τεχνικών ενίσχυσης του ρυθμού εναπόθεσης λεπτών υμενίων μc-Si:H όπως η χρήση πηγής πλάσματος υψηλής πυκνότητας ηλεκτρονίων (Hollow Cathode) και η χρήση δισιλανίου (Si2H6) ως επιπρόσθετο του τυπικού μίγματος SiH4/H2. Στο πρώτο μέρος παρουσιάζεται η κατασκευή δύο ηλεκτροδίων hollow cathode διαφορετικής γεωμετρίας και ο ηλεκτρικός χαρακτηρισμός τους σε εκκενώσεις Η2 με σκοπό τη βελτίωση της γεωμετρίας της πηγής και των συνθηκών στις οποίες επιτυγχάνεται υψηλή πυκνότητα ηλεκτρονίων στην εκκένωση. Επιπλέον παρουσιάζονται μετρήσεις ρυθμού εναπόθεσης λεπτών υμενίων με την πηγή hollow cathode διερευνώντας διαφορετικές παραμέτρους της διεργασίας και πραγματοποιείται σύγκριση με την προϋπάρχουσα πηγή χωρητικής σύζευξης. Αποδείχθηκε ότι με τη χρήση καθοδικών κοιλοτήτων μεγάλης διαμέτρου (20 mm) η πυκνότητα των ηλεκτρονίων αυξάνει σημαντικά και οι ρυθμοί εναπόθεσης είναι έως και τρεις φορές υψηλότεροι σε σχέση με την πηγή χωρητικής σύζευξης. Στο δεύτερο μέρος παρουσιάζεται η επίδραση της προσθήκης μικρής ποσότητας Si2H6 στο μίγμα SiH4/H2 στο ρυθμό εναπόθεσης και την κρυσταλλικότητα των λεπτών υμενίων πυριτίου, πραγματοποιείται βελτιστοποίηση της διεργασίας όσον αφορά την πίεση και συγκρίνεται η χρήση Si2H6 με την αύξηση της παροχής του μίγματος SiH4/H2. Η προσθήκη Si2H6 σε περιοχή πιέσεων 2-3 Torr αποδείχθηκε ευεργετική για το ρυθμό εναπόθεσης των υμενίων (έξι φορές αύξηση) λόγω ενίσχυσης της πυκνότητας ηλεκτρονίων και του ρυθμού διάσπασης του SiH4. Επίσης η προσθήκη Si2H6 οδηγεί σε υψηλότερη απόδοση εναπόθεσης συγκριτικά με την αύξηση της συνολικής παροχής του μίγματος SiH4/H2 ή της περιεκικότητας σε SiH4. / Microcrystalline hydrogenated silicon (μc-Si:H) is widely used as intrinsic layer in thin film solar cells of single or tandem structure. This material is most commonly produced via Plasma enhanced Chemical Vapor Deposition (PECVD) from highly diluted silane (SiH4) in hydrogen (H2). However, the rather low absorption coefficient of the intrinsic material in the visible spectrum imposes higher layer thickness in order to ensure high device efficiency. The key obstacle for the production of cost-effective solar cells is the relatively low growth rate of the intrinsic μc-Si:H and thus the research is focused on the increase of the deposition rate while maintaining the thin film quality. In this work we aim to study alternative techniques in order to enhance the μc-Si:H thin films growth rate such as the utilization of high electron density plasma source (hollow cathode) and the small disilane (Si2H6) addition to the SiH4/H2 gas mixture. In the first part is presented the construction of two novel hollow electrodes and their electrical characterization in H2 discharges aiming to investigate the conditions that ensure a high electron density in the discharge. Moreover, deposition rate measurements are presented for the hollow cathode source and compared to the already existing CCP source. It was proved that for the larger hollows (20mm diameter) the average electron density increased abruptly and the corresponding deposition rate was about 3 times higher comparatively to the CCP source. In the next part of this study is presented the effect of the small Si2H6 addition to the gas mixture to the silicon thin films growth rate and crystallinity, the process is optimized in terms of the total gas pressure and compared to the case of the SiH4/H2 total flow rate increase. The small Si2H6 addition in the narrow pressure region of 2-3 Torr proved beneficial for the film growth rate (six times increase) due to the sharp enhancement of the electron density and the SiH4 dissociation rate. The Si2H6 addition also resulted in much higher deposition efficiency as compared with the increase of the SiH4/H2 flow rate or the SiH4 molar fraction.
264

Properties and Processing of Chemical Vapor Deposited Zinc Sulfide

McCloy, John S. January 2008 (has links)
The structure and properties of chemical vapor deposited zinc sulfide (CVD ZnS) were assessed before and after heat treatments, involving different annealing and hot isostatic pressing (HIPing) profiles. Samples were characterized using optical microscopy, SEM, TEM, electron diffraction, polycrystalline and powder x-ray diffraction, x-ray chemical microanalysis, photoluminescence, ultraviolet through longwave infrared transmission, and mechanical testing. Before heat treatment, CVD ZnS consists of lamellar twinned structures in 10 to 100 nm layers aggregated into domains which compose grains typically 5 to 10 μm in diameter with an overall crystallographic texture on the {100} planes. The scattering behavior of CVD ZnS was investigated and described by a surface scattering model based on internal surface roughness and refractive index variations due to onedimensional stacking disorder. The two to five percent hexagonality measured by x-ray diffraction is believed to form due to oxygen impurities at the twin boundaries which cause nanostructural polytypism and result in differential refractive index and scattering. CVD ZnS variants in low temperature deposited red ZnS and sulfur precursor elemental ZnS are examined as well. Color in CVD ZnS is believed to be due to band edge position, probably due to oxygen content, and not directly related to the hydride absorption at 6 μm. After annealing or hot isostatic pressing above 850 °C for sufficient time, CVD ZnS recrystallizes and becomes strongly textured on the {111} planes. This recrystallization is required to remove stacking disorder, resulting in a structure with less than half a percent hexagonality and low visible scattering. The recrystallization is believed to proceed by diffusing the oxygen at the nano-twin boundaries back into the lattice, thus unpinning the boundaries and allowing them to move and grow into the tabular recrystallized morphology by polytype induced exaggerated grain growth. The presence of active metals like platinum, silver, copper, or nickel during hot isostatic pressing causes a reaction with sulfur and lowers the temperature required for recrystallization. The optical scattering model is consistent in describing standard CVD ZnS, elemental ZnS, and multispectral recrystallized ZnS as having successively lower birefringence at internal surfaces.
265

A Deformation Induced Quantum Dot

Woodsworth, Daniel James 05 1900 (has links)
Due to their extraordinary electronic properties, Quantum Dots (QDs) are potentially very useful nanoscale devices and research tools. As their electrons are confined in all three dimensions, the energy spectra of QDs is descrete, similar to atoms and molecules. Because the gaps between these energy levels is inversely related to the size of the QD, very small QDs are desirable. Carbon nanotubes have long been touted as fundamental units of nanotechnology, due to their structural, optical and electronic properties, many of which are a result of the confinement of electrons in the trans-axial plane of the nanotube. It is known that their band gap structure is altered under deformation of their cross section. It is proposed that one way to fabricate a very small quantum dot is by confining electrons in the nanotube so that they may not freely move along its length. A structure to produce this confinement has been described elsewhere, namely the carbon nanotube cross, consisting of two carbon nanotubes, with the the one draped over the other at ninety degrees. It is thought that this structure will induce local physical deformations in the nanotube, resulting in local changes in electronic structure of the top nanotube at the junction of the cross. These band gap shifts may cause metal-semiconductor transitions, resulting in tunnel barriers that axially the confine electrons in the nanotube. This thesis investigates the possibility that the carbon nanotube cross may exhibit QD behavior at the junction of the cross, due to these local band gap shifts. A device for carbon nanotube growth, using Chemical Vapor Deposition, has been designed, and may be built using microfabrication techniques. This device consists of electrodes (for electrical measurements of the nanotubes) and catalyst regions (to initiate nanotube growth), lithographically patterned in a configuration that promotes carbon nanotube formation. Unfortunately, due to fabrication issues, this effort is a work in progress, and these devices have not yet been constructed. However, an experimental methodolgy has been developed, which provides a framework for eventually building a carbon nanotube cross, and investigating the possibility of QD behavior at the junction of the cross. This structure has also been investigated computationally. Molecular dynamics simulations were used to obtain equilibrium geometries of the carbon nanotube cross, and it was found that their are many different meta stable states, corresponding to different types of nanotube, and different physical arrangements of these nanotubes. The electronic structure of the carbon nanotube cross was calculated using the density functional theory. Band gap energies similar to experimental values were obtained. A one-to-one spatial correlation between deformation and band gap and conduction band shifts were observed in the top carbon nanotube of the nanotube cross. Small tunnel barriers, inferred from both the calculated band gap and LUMO energies, are observed, and could well be sufficient to confine electrons along the axis of the nanotube. The results described in this thesis, while not definitive, certainly indicate that a QD probably would form at the junction of a carbon nanotube cross, and that further investigation, both experimental and computational, is warranted.
266

Synthesis of millimeter-scale carbon nanotube arrays and their applications on electrochemical supercapacitors

Cui, Xinwei Unknown Date
No description available.
267

Combustion chemical vapor deposition of α-alumina, YSZ and multilayer α-alumina/YSZ films

Griffin, Jack M. 05 1900 (has links)
No description available.
268

Fabrication of surface enhanced Raman spectroscopy (SERS) active substrates based on vertically aligned nitrogen doped carbon nanotube forest

Alam, Md Khorshed January 2015 (has links)
This thesis work describes the fabrication and surface enhanced Raman spectroscopy (SERS) characterization of vertically aligned nitrogen (N) doped multi walled carbon nanotube (MWCNT) forests coated by silver (Ag) and gold (Au) nanoparticles. In the present work, the CNT forests were grown from a catalyst metal layer by the chemical vapor deposition (CVD) process at temperature of 800 oC and a physical vapor deposition (PVD) and annealing processes were applied subsequently for the evaporation and diffusion of noble metal nanoparticles on the forest. Transistor patterning of 20, 50 and 100 μm were made onto the silicon-oxide (SiO2) wafers through the photolithography process with and without depositing a thickness of 10 nm titanium (Ti) buffer layer on the Si-surfaces. Iron (Fe) and cobalt (Co) were used together to deposite a thickness of 5 nm catalyst layer onto the Single Side Polished (SSP) wafers. As carbon and nitrogen precursor for the CNT growth was used pyridine. Two different treatment times (20 and 60 minutes) in the CVD process determined the CNT forest height. Scanning Electron Microscopy (SEM) imaging was employed to characterize the CNT forest properties and Ag and Au nanoparticle distribution along the CNT walls. The existence of “hot spots” created by the Ag and Au nanoparticles through the surface roughness and plasmonic properties was demonstrated by the SERS measurements. Accordingly, the peak intensity at wave number of 1076 cm-1 was picked up from each SERS spectra to establish the Ag- and Au-trend curves with different concentrations of 4-ATP solution. The SERS mapping was also carried out to study the Ag- and Au-coated CNT surface homogeneity and “hot spots” distribution on the CNT surface. The SERS enhancement factors (EF) were calculated by applying an analyte solution of ethanolic 4-ATP on the CNT surface. The calculated values of EF from Ag- and Au-coated CNT forests were 9×106 and 2.7×105 respectively.
269

Crystal growth of an organic non-linear optical material from the vapour phase

Hou, Wenbo January 1999 (has links)
No description available.
270

Studies of LPCVD and anodised TiO←2 thin films and their photoelectrocatalytic photochemical properties for destruction of organic effluents

Tian, Fang January 2001 (has links)
No description available.

Page generated in 0.045 seconds