• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 518
  • 210
  • 94
  • 65
  • 33
  • 20
  • 20
  • 20
  • 20
  • 20
  • 20
  • 15
  • 14
  • 11
  • 7
  • Tagged with
  • 1201
  • 215
  • 165
  • 161
  • 152
  • 144
  • 142
  • 136
  • 134
  • 105
  • 102
  • 101
  • 96
  • 92
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Chromosome abnormalities, sex ratio, and fertility in Gallus domesticus /

Duber, Margaret Marie January 1973 (has links)
No description available.
92

Unequal transmission of the complementary meiotic products of a gentric fission by heterozygous cocks in Gallus domesticus /

Gabriel, Edward George January 1977 (has links)
No description available.
93

Reproductive consequences of Z-autosome translocation heterozygosity in male domestic fowl (Gallus domesticus, L.) /

Blazak, William Francis January 1979 (has links)
No description available.
94

Cytogenetic and molecular investigation of terminal deletion of the long arm of chromosome 7 in three cases

Ayub, Seemi January 2009 (has links)
Chromosomal anomaly is an abnormality of the number or structure of the chromosome. Based on this, they are classified as either numerical or structural. These anomalies can have a mild or severe effect on the phenotype of the carrier which depends on the chromosomal region involved and the genes implicated. They can be sporadic or inherited. Thus, it is essential to investigate such anomalies both prenatally and postnatally alike. In a standard cytogenetic lab, these anomalies can be detected using low-resolution or high-resolution karyotype, usually by performing GTG (G-bands by trypsin using Giemsa) on chromosomes undergoing mitosis, derived from blood. If higher resolution is required, there are various other molecular cytogenetic techniques available like FISH and microsatellite analysis. More recently, microarrays have opened a new era in the field of molecular genetics by greatly increasing the resolution of screening for copy number gains and losses. Using these techniques, we characterized deletions in the long arm of chromosome 7 in three clinical cases, identified the breakpoint, studied the inheritance pattern and compared our cases with the other cases carrying similar deletion in the literature. It was observed that the deletion was located at 7q36.2, 7q35 and 7q36.1 for cases 1, 2 and 3 respectively. Case 3 also carried a duplication of Xq28.
95

The evaluation of Y-STR loci for use in forensics.

Ehrenreich, Liezle Suzette. January 2005 (has links)
<p>The aim of this study was to investigate the forensic usefulness of various Y-chromosome short tandem repeat loci among South African sub-populations. Three different sets of Y-chromosome short tandem repeat loci were chosen for investigation.</p>
96

Anaphase bridges generated by dicentric chromosomes break predominantly at pericentromeric regions and internal telomeric sequences / Les ponts d’anaphase générés par les chromosomes dicentriques cassent principalement au niveau des régions péricentromériques et des séquences télomériques internes

Barinova-Melenkova, Natalja 17 June 2015 (has links)
Dans la plupart des eucaryotes, il n’existe qu’une seule région centromérique par chromosome et celle-ci est capable d’être liée au fuseau mitotique via le complexe du kinétochore. Dans ce contexte, la présence de deux centromères est un défi pour une séparation normale. Au cours de la mitose, la capture des deux centromères de la même chromatides vers les pôles opposés génère un pont d’anaphase résultant en une rupture entre les centromères. Les extrémités libérées peuvent être fusionnées bout à bout recréant ainsi un dicentrique. Le chromosome entre alors dans un cycle de Rupture Cassure Pont, capable quelques cycles d’entrainer des modifications profondes du nombre de copies de gène qui peuvent contribuer à l'oncogenèse et résistance à la chimiothérapie. Malgré son importance, le mécanisme de rupture reste pour une grande partie inexploré. Ce projet permet l’analyse de la rupture des chromosomes dicentriques en utilisant le modèle de la levure bourgeonnante, Saccharomyces cerevisiae. Nous utilisons des souches dicentriques conditionnelles dans lequelles un chromosome, portant un centromère conditionnel sous le contrôle de deux promoteurs inductibles au galactose, est fusionné à un autre chromosome natif par recombinaison homologue. Nous avons observé que les chromosomes dicentriques ont tendance à casser dans le voisinage des deux centromères. La région de la rupture se répand sur ~ 30 kb vers l'autre centromère. Une insertion d’un fragment d’ADN 1-kb possédant un centromère ectopique dans un chromosome avec un centromère conditionnelle établit un point chaud d’environs 30 kb indiscernables des points chauds à centromères natifs. En outre, la taille de zone de rupture n’est pas corrélée à la distance intercentromerique (des intervalles de 30-600 kb ont été testés). Cela indique que la plus forte propension à rompre est une conséquence de la structure ou de la fonction des centromères et est sans rapport avec les séquences environnantes des chromosomes. Il est encore difficile de savoir si la rupture aux centromères a une fonction physiologique, mais nous pouvons supposer que ce point chaud peut favoriser les réarrangements d'ADN dans ces régions permettant ainsi l’inactivation du centromère et donc le retour à un caryotype stable. Globalement dans la S.cerevisiae, les dicentriques cassent dans les régions péricentromériques ou dans les fusions de télomères quand ils sont présents. Fait intéressant, les séquences télomériques internes, à savoir les répétitions TG₁₋₃, établissent plusieurs points chauds de rupture à une fréquence similaire. En perspective, il serait intéressant d'aborder les questions suivantes : 1) Quelles sont les caractéristiques qui rendent une région plus sujette à la casse ? 2) Quelles sont les positions de rupture au niveau des nucléotides ? 3) Existe-t-il un contrôle de la cassure des chromatides exercé dans la cellule ? 4) Quelle peut être la fonction biologique des points chauds de cassures ? / In most eukaryotes, there is one defined centromeric region per chromosome that links it to the spindle apparatus via the kinetochore complex. In this context, the presence of two centromeres is a challenge for an accurate segregation. During mitosis, the capture of the two centromeres of the same chromatid to opposite poles generates anaphase bridges that results in breakage between the centromeres. The released ends can be fused end-to-end thus recreating dicentric. It enters breakage-fusion-bridge cycles that, in multiple rounds, can result in large gene copy number alterations that can contribute to oncogenesis and chemotherapy resistance. Despite of its significance, the mechanism of breakage remains for a large part unexplored. This project adresses the dicentric breakage using a budding yeast, Saccharomyces cerevisiae. We use conditional dicentric strains, where a chromosome, bearing a conditional centromere under the control of two galactose-inducible promoters, is fused to another native chromosome by homologous recombination. We observed that dicentric chromosomes tend to break in the vicinity of the two centromeres. The breakage region spreads over ~30 kb towards the other centromere. An insertion of a 1-kb ectopic centromere in a chromosome with a conditional centromere establishes a ~30 kb hot spot indistinguishable from the hot spots at native centromeres. Furthermore, the size of breakage region is unrelated to an intercentromeric distance (30-600 kb intervals were tested). This indicates that the higher propensity to break is a consequence of centromere structure or function and is unrelated to the native surrounding sequences. It is yet unclear whether breakage at centromeres has a physiological function but we can speculate that this hot spot may favour local DNA rearrangements that result in centromere inactivation and thus the return to a stable karyotype. Overall in budding yeast, dicentrics break at pericentromeric regions or at the telomere fusions when they are present. Interestingly, internal telomeric sequences, i.e. TG₁₋₃ repeats, establish several breakage hot spots with a similar frequency. In perspective, it would be interesting to address the following questions: 1) What are features that make a region more prone to breakage? 2) What are the positions of breakage at nucleotide level? 3) Is there a coordination of dicentric chromatid breakage? 4) What can be the biological function of dicentric breakage hot spots?
97

A study on the prevalence of AZFd Y-chromosome microdeletion in Hong Kong Chinese men with severe male factor infertility

Chung, Man-kin., 鍾文健. January 2004 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
98

The evaluation of Y-STR loci for use in forensics.

Ehrenreich, Liezle Suzette. January 2005 (has links)
<p>The aim of this study was to investigate the forensic usefulness of various Y-chromosome short tandem repeat loci among South African sub-populations. Three different sets of Y-chromosome short tandem repeat loci were chosen for investigation.</p>
99

Genetic testing for susceptibility to breast and ovarian cancer : a case study of clinical decision-making in medical genetics /

Glassberg, Andrea E. January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [202]-262).
100

A study on the prevalence of AZFd Y-chromosome microdeletion in Hong Kong Chinese men with severe male factor infertility

Chung, Man-kin. January 2004 (has links)
Thesis (M. Med. Sc.)--University of Hong Kong, 2004. / Also available in print.

Page generated in 0.0151 seconds