• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Non-Destructive Testing to Predict Bending Modulus of Carbon Infiltrated-Carbon Nanotubes

Fagergren, Fred Stile 01 December 2018 (has links)
Fabrication of carbon infiltrated carbon nanotubes (CI-CNT) can result in large mechanical property variation, and methods to characterize properties usually involve destructive testing. Finding a non-destructive way to test for stiffness of this material reduces the number of parts that have to be made. It also simplifies testing of complex parts. The stiffness of CI-CNT beams is related to the type of carbon material infiltrated between the carbon nanotubes (CNTs), how it interacts with the CNTs, and how much of it there is. The amount of material can be estimated using the density of the beam, and both the type of material and its interaction with the carbon nanotubes can be approximated through analysis of the Raman spectra taken at the surface. A combination of these two observations can be related to the effective material stiffness. The relationship can be fitted with a power function, with a variance of 1.41 GPa, which is about 11% of the maximum stiffness of the samples tested. This variance is similar to the larger variations in CI-CNT beam stiffnesses found in a single batch of beams.
2

Effects of Infiltration Temperature, Time, and Gas Flow Rate on Material Properties of Carbon Infiltration Carbon Nanotubes

Sypherd, Shane Dirk 01 September 2019 (has links)
This work characterizes the material properties of carbon infiltrated carbon nanotube (CI- CNT) structures. The impacts of temperature, time, and hydrogen flow rates on the material prop- erties of modulus of elasticity and strength are examined and compared. Carbon infiltration levels are assessed through the use of SEM images to determine which parameters give the highest level of infiltration. Through the use of SEM, carbon capping is observed on samples infiltrated for longer times at 900 and 950◦ C, suggesting that the samples are not being infiltrated during the entire desired infiltration period at these temperatures. The highest material properties of modulus and strength were reached when infiltrating the carbon nanotube forests for 150 mins at 850◦ C with hydrogen flowing at 311 sccm (0.0115 m/s). With these parameters, a modulus of 20.4 GPa and strength of 289.8 MPa were attained. The poorest results were seen when the samples were infiltrated at 800◦ C, and is therefore not recommended as an infiltration temperature if high mod- ulus and strength are desired. Density is correlated to strength and modulus and it is seen that there is a strong correlation between higher strength and modulus with higher density.
3

Advanced Techniques for Carbon Nanotube Templated Microfabrication

Lund, Jason Matthew 01 December 2019 (has links)
Carbon nanotube templated microfabrication (CNT-M) is a term describing a grouping of processes where carbon nanotubes (CNTs) serve a structural role in the fabrication of a material or device. In its basic form, CNT-M is comprised of two steps: produce a template made from carbon nanotubes and infiltrate the porous template with an additional material. Vertically aligned carbon nanotube (VACNT) templates can be grown to heights ranging from microns to millimeters and lithographically patterned to a desired form. Deposition of an existing thin film material onto a CNT template will coat all template surfaces and can produce a near solid material with dimensions on the millimeter scale with resulting material properties coming primarily from the thin film. Progress within CNT-M falls broadly within one of two categories: control of the CNT template's properties and form, or control of infiltration and new materials.Three-dimensional CNT templates were developed to allow patterned multilayer VACNT structures. In one embodiment, VACNTs were grown below an existing, patterned and capillary-formed VACNT structure by reusing the original catalyst in combination with newly deposited catalyst to create a CNT-based microneedle array on a VACNT support. In another embodiment, VACNTs were mechanically coupled from the initial stages of growth to create a smooth, low porosity surface on which a secondary, patterned CNT forest was grown using standard film deposition and lithographic techniques.A microfabrication compatible thermal barrier was produced using CNTs as a sacrificial template for silicon oxide. The resulting thermal barrier exhibited a thermal conductivity that could be tuned across 2 orders of magnitude based on the degree to which the sacrificial template was removed. Carbon infiltrated carbon nanotubes (CI-CNTs) were produced that exhibited a Young's modulus ranging from 5GPa to 26GPa based on controlled process parameters. Porosity, centroid position, and the second moment of area was calculated from SEM images of CI-CNT structures using an automatic pore identification technique. The porosity results suprisingly show little to no porosity gradient across the width of the structure and a nearly linear increase in porosity from the top to bottom. This work advances the understanding of existing CNT-M processes and demonstrates novel techniques for producing future CNT templates.

Page generated in 0.0137 seconds