1 |
Modeling and Parameter Study of Bistable Spherical Compliant MechanismsSmith, Chester 01 January 2011 (has links)
The bistable spherical compliant mechanism (BSCM) is a novel device capable of large, repeatable, out-of-plane motion, characteristics that are somewhat difficult to achieve with surface micromachined microelectromechanical systems. An improved pseudo-rigid-body model (PRBM) to predict the behavior of the BSCM is presented. The new model was used to analyze seven different versions of the device, each with a different compliant joint length. The new model, which adds torsion, is compared with a finite element analysis (FEA) beam model. The new model more closely approximates the results yielded by FEA than previous models used to analyze the BSCM. Future work is needed to quantify stress-stiffening interactions between bending and torsion. Both FEA and the current models show that increasing the length of the compliant segment decreases the amount of force required to actuate the device.
|
2 |
Microsystème électrostatique tridimensionnel de récupération d'énergie pour alimenter un stimulateur cardiaque sans sonde / 3D electrostatic energy harvester to power a leadless pacemakersRisquez, Sarah 28 February 2017 (has links)
Cette thèse s’inscrit dans un contexte d’activité en forte croissance dans le domaine des implants médicaux, stimulée par de nombreux progrès dans le domaine des micro-capteurs et de la micro-électronique. L’autonomie en énergie des implants demeure cependant un facteur limitant. Notre travail a pour objectif de repousser les limites actuelles en termes de miniaturisation et de durée de vie. Il contribue au développement d’une solution basée sur la récupération d’énergie mécanique du cœur pour alimenter durablement un pacemaker miniaturisé sans sonde de nouvelle génération, dit « pacemaker leadless ».Le microsystème de récupération d’énergie étudié est composé d’un résonateur mécanique de type masse-ressort associé à un transducteur électrostatique. Il a pour particularité une architecture tridimensionnelle, dont la forme permet de profiter au maximum de l’espace disponible dans la capsule cylindrique du pacemaker. L'utilisation de la troisième dimension associée à un design original permet en outre d’obtenir un effet de pseudo multiplication de fréquence qui doit conduire, d’après les modèles que nous avons développés, à des densités de puissance nettement supérieures à celles présentées dans l'état de l'art. Pour réaliser ce microsystème tridimensionnel, nous avons développé un procédé de fabrication additif qui repose sur des étapes de micro moulage d'un matériaux structurel obtenu par croissance électrolytique (nickel), de croissance d'un matériau sacrificiel (cuivre) et de polissage. L’identification d’imperfections géométriques dues au procédé et aux matériaux utilisés nous a amené à améliorer la conception du transducteur. Par ailleurs, de nombreux verrous de fabrication ont été levés au cours de cette thèse grâce à la mise en œuvre d’une instrumentation dédiée. Ce procédé nous a permis de fabriquer un premier prototype tridimensionnel du micro-transducteur électrostatique composé de 10 couches de nickel. D’autres métaux élaborés par croissance électrolytique pourraient être envisagés pour réaliser des microsystèmes tridimensionnels, suivant les besoins de l’application considérée. Afin d’anticiper d’éventuels problèmes de compatibilité des micro-dispositifs avec l'imagerie par résonance magnétique, nous avons mis au point le procédé de croissance électrolytique d’un matériau non-magnétique à base de nickel dopé au phosphore. / This thesis contributes to the medical implants field, which is stimulated by many advances in the fields of microelectronics and microsensors. However, electrical energy lifespan of implants and large size of batteries are still a problem. Our work aims at pushing back these limits. It contributes to the development of a solution based on mechanical energy harvesting from the heart motion. The objective is to sustainably power a new generation of pacemakers without lead, so-called "leadless pacemakers."The studied energy harvesting microsystem consists in a spring-mass-type mechanical resonator associated with an electrostatic transducer. Its originality comes from a three-dimensional architecture, whose shape fits pretty well with the cylindrical shape of the pacemaker capsule. The use of the third dimension combined with an original design enables to get a pseudo multiplication frequency effect. Thanks to this effect, our simulation models predict power densities significantly higher than state-of-the-art figures reported in literature. To fabricate this three-dimensional microsystem, we have developed an additive manufacturing process based on steps of micro-molding of a structural material (electroplated nickel), electroplating of a sacrificial material (copper) and planarization. Identification of imperfections related to the fabrication process and the materials used allowed us to improve the design of the transducer. Moreover, many manufacturing obstacles were overcome during this thesis through the implementation of dedicated instrumentation. This new process has enabled us to fabricate a first three-dimensional prototype of the electrostatic micro-transducer made of 10 layers of nickel. Other electroplated metals can be envisaged to achieve three-dimensional microsystems, depending on the application requirements. In order to anticipate any compatibility issue of our microsystem with magnetic resonance imaging, we have developed the electrodeposition process of a nonmagnetic material: phosphorous doped nickel.
|
3 |
Advanced Techniques for Carbon Nanotube Templated MicrofabricationLund, Jason Matthew 01 December 2019 (has links)
Carbon nanotube templated microfabrication (CNT-M) is a term describing a grouping of processes where carbon nanotubes (CNTs) serve a structural role in the fabrication of a material or device. In its basic form, CNT-M is comprised of two steps: produce a template made from carbon nanotubes and infiltrate the porous template with an additional material. Vertically aligned carbon nanotube (VACNT) templates can be grown to heights ranging from microns to millimeters and lithographically patterned to a desired form. Deposition of an existing thin film material onto a CNT template will coat all template surfaces and can produce a near solid material with dimensions on the millimeter scale with resulting material properties coming primarily from the thin film. Progress within CNT-M falls broadly within one of two categories: control of the CNT template's properties and form, or control of infiltration and new materials.Three-dimensional CNT templates were developed to allow patterned multilayer VACNT structures. In one embodiment, VACNTs were grown below an existing, patterned and capillary-formed VACNT structure by reusing the original catalyst in combination with newly deposited catalyst to create a CNT-based microneedle array on a VACNT support. In another embodiment, VACNTs were mechanically coupled from the initial stages of growth to create a smooth, low porosity surface on which a secondary, patterned CNT forest was grown using standard film deposition and lithographic techniques.A microfabrication compatible thermal barrier was produced using CNTs as a sacrificial template for silicon oxide. The resulting thermal barrier exhibited a thermal conductivity that could be tuned across 2 orders of magnitude based on the degree to which the sacrificial template was removed. Carbon infiltrated carbon nanotubes (CI-CNTs) were produced that exhibited a Young's modulus ranging from 5GPa to 26GPa based on controlled process parameters. Porosity, centroid position, and the second moment of area was calculated from SEM images of CI-CNT structures using an automatic pore identification technique. The porosity results suprisingly show little to no porosity gradient across the width of the structure and a nearly linear increase in porosity from the top to bottom. This work advances the understanding of existing CNT-M processes and demonstrates novel techniques for producing future CNT templates.
|
4 |
Mikromechanischer Prozess zur Herstellung mehrlagiger 3D-MEMS (EPyC-Prozess)Louriki, Latifa 05 May 2021 (has links)
In der vorliegenden Dissertation wird die Entwicklung eines MEMS Herstellungsverfahrens beschrieben. Der Bosch patentierte EPyC-Prozess bietet die Möglichkeit komplexe MEMS-Strukturen mit hoher Effektivität auf engem Raum
herzustellen.
Zielsetzung dieser Arbeit ist die Untersuchung und Optimierung der EPyC-Einzelprozesse, sowie der Aufbau eines Mikrospiegelantriebs mit 40 μm hohen Elektrodenfingern für hohe z-Auslenkungen. Die Herstellung von MEMS-Strukturen mit dem EPyC-Prozess erfordert eine gute elektrische und mechanische Funktionalität der dicken epitaktischen Siliziumschichten. Durch Wiederholung der EPyC-Zyklen entsteht eine 3D-Opferstruktur. Die Herausforderung besteht darin, hohe Volumina an Polysilizium am Ende des Prozesses vollständig zu entfernen.
Durch das Wiederholen von fünf EPyC Zyklen wurde der Mikrospiegelantrieb mit
40 μm hohen vertikalen Kammelektroden erfolgreich hergestellt. Anschließend wurde der Mikrospiegelantrieb mit dem optimierten Silizium-Ätzprozess in zwei Schritten freigestellt. Damit der Mikrospiegelantrieb mechanisch beweglich und elektrisch funktional wird, wurde die SiO2-Passivierung auf den Funktionsstrukturen mittels HF-Gasphasenätzen erfolgreich entfernt. Die elektrischen und mechanischen Funktionalitäten des Mikrospiegelantriebes wurden mittels Laservibrometer geprüft und bestätigt.:1 Einleitung 1
1.1 Stand der Technik 3
1.2 Zielsetzung 6
1.3 EPyC-Prozess 7
2 Methoden 16
2.1 Abscheideverfahren 16
2.1.1 Chemische Depositionsverfahren 16
2.1.2 LPCVD-Verfahren 17
2.1.3 Thermische Oxidation 22
2.1.4 Kathodenstrahlzerstäubung (Sputtern) 23
2.2 Silizium Dotieren 24
2.3 Strukturieren von Silizium mit dem DRIE-Prozess (Deep Reactive Ion Etching) 24
2.4 Strukturieren von dielektrischen Schichten: Reaktiven Ionenätzen (RIE) 27
2.5 Gasphasenätzen von Oxid mit HF-Dampf 28
2.6 Isotopes Silizium-Opferschicht Trockenätzen 28
2.6.1 Plasmaloses isotropes Siliziumätzen mit Xenondifluorid 28
2.6.2 Plasmaunterstütztes isotropes Siliziumätzen mit Schwefelhexafluorid 31
2.7 Charakterisierung der abgeschiedenen Schichten 31
2.7.1 Kristallstruktur 31
2.7.2 Mechanische Charakterisierung 33
2.7.3 Elektrische Charakterisierung 37
2.8 Elektrische und mechanische Charakterisierung der hergestellten 3D-MEMS Struktur 38
3 Ergebnisse 41
3.1 Ablauf des Herstellungsprozesses eines einzelnen EPyC-Zyklus mit unterschiedlich dicken Epi und ihre
Charakterisierung 41
3.1.1 Ablauf der Abscheidung eines einzelnen EPyC-Zyklus 44
3.1.2 Charakterisierung der abgeschiedenen Schichten 50
3.1.2.3.1 Epi-Schicht (𝒅 = 𝟐𝟎 μ𝒎) 61
3.1.3 DRIE-Prozess für dicke Epi-Schichten 64
3.1.4 Trench-Verfüllung 69
3.1.5 Siliziumopferschichttechnik 86
3.2 Herstellung eines Mikrospiegelantriebs mittels fünf EPyC Zyklen 105
3.2.1 Ablauf der Mikrospiegelantriebsherstellung mittels EPyC-Prozesses 106
3.2.2 Charakterisierung des hergestellten Mikrospiegelantriebs 115
4 Zusammenfassung
Abbildungsverzeichnis
Tabellenverzeichnis
Eigene Veröffentlichungen
Thesen
|
Page generated in 0.0329 seconds