161 |
Classification-based Adaptive Image DenoisingMcCrackin, Laura 11 1900 (has links)
We propose a method of adaptive image denoising using a support vector machine (SVM) classifier to select between multiple well-performing contemporary denoising algorithms for each pixel of a noisy image. We begin by proposing a simple method for realistically generating noisy images, and also describe a number of novel and pre-existing features based on seam energy, local colour, and saliency which are used as classifier inputs. Our SVM strategic image denoising (SVMSID) results demonstrate better image quality than either candidate denoising algorithm for images of moderate noise level, as measured using the perceptually-based quaternion structural similarity image metric (QSSIM). We also demonstrate a modified training point selection method to improve robustness across many noise levels, and propose various extensions to SVMSID for further exploration. / Thesis / Master of Applied Science (MASc)
|
162 |
Learning Transferable Features for Diagnosis of Breast Cancer from Histopathological ImagesAl Zorgani, Maisun M., Irfan, Mehmood,, Ugail, Hassan 25 March 2022 (has links)
No / Nowadays, there is no argument that deep learning algorithms provide impressive results in many applications of medical image analysis. However, data scarcity problem and its consequences are challenges in implementation of deep learning for the digital histopathology domain. Deep transfer learning is one of the possible solutions for these challenges. The method of off-the-shelf features extraction from pre-trained convolutional neural networks (CNNs) is one of the common deep transfer learning approaches. The architecture of deep CNNs has a significant role in the choice of the optimal learning transferable features to adopt for classifying the cancerous histopathological image. In this study, we have investigated three pre-trained CNNs on ImageNet dataset; ResNet-50, DenseNet-201 and ShuffleNet models for classifying the Breast Cancer Histopathology (BACH) Challenge 2018 dataset. The extracted deep features from these three models were utilised to train two machine learning classifiers; namely, the K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) to classify the breast cancer grades. Four grades of breast cancer were presented in the BACH challenge dataset; these grades namely normal tissue, benign tumour, in-situ carcinoma and invasive carcinoma. The performance of the target classifiers was evaluated. Our experimental results showed that the extracted off-the-shelf features from DenseNet-201 model provide the best predictive accuracy using both SVM and KNN classifiers. They yielded the image-wise classification accuracy of 93.75% and 88.75% for SVM and KNN classifiers, respectively. These results indicate the high robustness of our proposed framework.
|
163 |
STUDENT ATTENTIVENESS CLASSIFICATION USING GEOMETRIC MOMENTS AIDED POSTURE ESTIMATIONGowri Kurthkoti Sridhara Rao (14191886) 30 November 2022 (has links)
<p> Body Posture provides enough information regarding the current state of mind of a person. This idea is used to implement a system that provides feedback to lecturers on how engaging the class has been by identifying the attentive levels of students. This is carried out using the posture information extracted with the help of Mediapipe. A novel method of extracting features are from the key points returned by Mediapipe is proposed. Geometric moments aided features classification performs better than the general distances and angles features classification. In order to extend the single person pose classification to multi person pose classification object detection is implemented. Feedback is generated regarding the entire lecture and provided as the output of the system. </p>
|
164 |
CONTEXTUAL DECOMPOSITION OF WEB RESOURCES: APPLYING SEMANTIC GRAPH ANALYSIS TO PERSONAL URL SETSJOSHI, ABHIJIT PURSHOTTAM January 2003 (has links)
No description available.
|
165 |
AN IMPROVED METHODOLOGY FOR LAND-COVER CLASSIFICATION USING ARTIFICIAL NEURAL NETWORKS AND A DECISION TREE CLASSIFIERARELLANO-NERI, OLIMPIA 01 July 2004 (has links)
No description available.
|
166 |
Mutual k Nearest Neighbor based ClassifierGupta, Nidhi January 2010 (has links)
No description available.
|
167 |
Numerical Study of Three-Dimensional Flow Through a Deep Open Channel - Including a Wire-Mesh Segment on One Side WallJana, Chandrima January 2011 (has links)
No description available.
|
168 |
Confined Aerosol Jet in Fiber Classification and Dustiness MeasurementDubey, Prahit 08 September 2015 (has links)
No description available.
|
169 |
3D Face Reconstruction From Front And Profile ImageDasgupta, Sankarshan 09 August 2021 (has links)
No description available.
|
170 |
Flight Data Processing Techniques to Identify Unusual EventsMugtussids, Iossif B. 26 June 2000 (has links)
Modern aircraft are capable of recording hundreds of parameters during flight. This fact not only facilitates the investigation of an accident or a serious incident, but also provides the opportunity to use the recorded data to predict future aircraft behavior. It is believed that, by analyzing the recorded data, one can identify precursors to hazardous behavior and develop procedures to mitigate the problems before they actually occur. Because of the enormous amount of data collected during each flight, it becomes necessary to identify the segments of data that contain useful information. The objective is to distinguish between typical data points, that are present in the majority of flights, and unusual data points that can be only found in a few flights. The distinction between typical and unusual data points is achieved by using classification procedures.
In this dissertation, the application of classification procedures to flight data is investigated. It is proposed to use a Bayesian classifier that tries to identify the flight from which a particular data point came. If the flight from which the data point came is identified with a high level of confidence, then the conclusion that the data point is unusual within the investigated flights can be made.
The Bayesian classifier uses the overall and conditional probability density functions together with a priori probabilities to make a decision. Estimating probability density functions is a difficult task in multiple dimensions. Because many of the recorded signals (features) are redundant or highly correlated or are very similar in every flight, feature selection techniques are applied to identify those signals that contain the most discriminatory power. In the limited amount of data available to this research, twenty five features were identified as the set exhibiting the best discriminatory power. Additionally, the number of signals is reduced by applying feature generation techniques to similar signals.
To make the approach applicable in practice, when many flights are considered, a very efficient and fast sequential data clustering algorithm is proposed. The order in which the samples are presented to the algorithm is fixed according to the probability density function value. Accuracy and reduction level are controlled using two scalar parameters: a distance threshold value and a maximum compactness factor. / Ph. D.
|
Page generated in 0.0197 seconds