• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 172
  • 47
  • 45
  • 19
  • 10
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 403
  • 106
  • 103
  • 91
  • 87
  • 62
  • 56
  • 53
  • 45
  • 45
  • 45
  • 44
  • 42
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Zjednoznačňování slovních významů / Word Sense Disambiguation

Kraus, Michal January 2008 (has links)
The master's thesis deals with sense disambiguation of Czech words. Reader is informed about task's history and used algorithms are introduced. There are naive Bayes classifier, AdaBoost classifier, maximum entrophy method and decision trees described in this thesis. Used methods are clearly demonstrated. In the next parts of this thesis are used data also described.  Last part of the thesis describe reached results. There are some ideas to improve the system at the end of the thesis.
182

Unární klasifikátor obrazových dat / Unary Classification of Image Data

Beneš, Jiří January 2021 (has links)
The work deals with an introduction to classification algorithms. It then divides classifiers into unary, binary and multi-class and describes the different types of classifiers. The work compares individual classifiers and their areas of use. For unary classifiers, practical examples and a list of used architectures are given in the work. The work contains a chapter focused on the comparison of the effects of hyperparameters on the quality of unary classification for individual architectures. Part of the submission is a practical example of implementation of the unary classifier.
183

Predicting the threshold grade for university admission through Machine Learning Classification Models / Förutspå tröskelvärdet för universitetsantagningsbetyg genom klassificeringsmodeller inom maskininlärning

Almawed, Anas, Victorin, Anton January 2023 (has links)
Higher-level education is very important these days, which can create very high thresholds for admission on popular programs on certain universities. In order to know what grade will be needed to be admitted to a program, a student can look at the threshold from previous years. We explored whether it was possible to generate accurate predictions of what the future threshold would be. We did this by using well-established machine learning classification models and admission data from 14 years back covering all applicants to the Computer Science and Engineering Program at KTH Royal Institute of Technology. What we found through this work is that the models are good at correctly classifying data from the past, but not in a meaningful way able to predict future thresholds. The models could not make accurate future predictions solely based on grades of past applicants. / Eftergymnasiala studier är väldigt viktiga numera, vilket kan leda till mycket höga antagningskrav på populära program på vissa universitet och högskolor. För att veta vilket betyg som krävs för att komma in på en utbildning så kan studenten titta på gränsen från tidigare år och utifrån det gissa sig till vad gränsen kommer vara kommande år. Vi undersöker om det är möjligt att, med hjälp av väletablerade, klassificerande Maskininlärnings-modeller kunna förutse antagningsgränsen i framtiden. Vi tränar modellerna på data med antagningsstatistik som sträcker sig tillbaka 14 år med alla ansökningar till civilingenjörs-programmet Datateknik på Kungliga Tekniska Högskolan. Det vi finner genom detta arbete är att modellerna är bra på att korrekt klassificera data från tidigare år, men att de inte, på ett meningsfullt sätt, kan förutse betygsgränsen kommande år. Modellerna kan inte göra detta endast genom data på betyg från tidigare år.
184

Boundary uncertainty-based classifier evaluation / 境界曖昧性に基づく分類器評価 / キョウカイ アイマイセイ ニ モトズク ブンルイキ ヒョウカ

ア デイビッド, David Ha 20 September 2019 (has links)
種々の分類器を対象として,有限個の学習データのみが利用可能である現実においても理論的に的確で計算量的にも実際的な,分類器性能評価手法を提案する.分類器評価における難しさは,有限データのみの利用に起因する分類誤り推定に伴う偏りの発生にある.この困難を解決するため,「境界曖昧性」と呼ばれる新しい評価尺度を提案し,それを用いる評価法の有用性を,3種の分類器と13個のデータセットを用いた実験を通して実証する. / We propose a general method that makes accurate evaluation of any classifier model for realistic tasks, both in a theoretical sense despite the finiteness of the available data, and in a practical sense in terms of computation costs. The classifier evaluation challenge arises from the bias of the classification error estimate that is only based on finite data. We bypass this existing difficulty by proposing a new classifier evaluation measure called "boundary uncertainty'' whose estimate based on finite data can be considered a reliable representative of its expectation based on infinite data, and demonstrate the potential of our approach on three classifier models and thirteen datasets. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
185

Off-line signature verification using ensembles of local Radon transform-based HMMs

Panton, Mark Stuart 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: An off-line signature verification system attempts to authenticate the identity of an individual by examining his/her handwritten signature, after it has been successfully extracted from, for example, a cheque, a debit or credit card transaction slip, or any other legal document. The questioned signature is typically compared to a model trained from known positive samples, after which the system attempts to label said signature as genuine or fraudulent. Classifier fusion is the process of combining individual classifiers, in order to construct a single classifier that is more accurate, albeit computationally more complex, than its constituent parts. A combined classifier therefore consists of an ensemble of base classifiers that are combined using a specific fusion strategy. In this dissertation a novel off-line signature verification system, using a multi-hypothesis approach and classifier fusion, is proposed. Each base classifier is constructed from a hidden Markov model (HMM) that is trained from features extracted from local regions of the signature (local features), as well as from the signature as a whole (global features). To achieve this, each signature is zoned into a number of overlapping circular retinas, from which said features are extracted by implementing the discrete Radon transform. A global retina, that encompasses the entire signature, is also considered. Since the proposed system attempts to detect high-quality (skilled) forgeries, it is unreasonable to assume that samples of these forgeries will be available for each new writer (client) enrolled into the system. The system is therefore constrained in the sense that only positive training samples, obtained from each writer during enrolment, are available. It is however reasonable to assume that both positive and negative samples are available for a representative subset of so-called guinea-pig writers (for example, bank employees). These signatures constitute a convenient optimisation set that is used to select the most proficient ensemble. A signature, that is claimed to belong to a legitimate client (member of the general public), is therefore rejected or accepted based on the majority vote decision of the base classifiers within the most proficient ensemble. When evaluated on a data set containing high-quality imitations, the inclusion of local features, together with classifier combination, significantly increases system performance. An equal error rate of 8.6% is achieved, which compares favorably to an achieved equal error rate of 12.9% (an improvement of 33.3%) when only global features are considered. Since there is no standard international off-line signature verification data set available, most systems proposed in the literature are evaluated on data sets that differ from the one employed in this dissertation. A direct comparison of results is therefore not possible. However, since the proposed system utilises significantly different features and/or modelling techniques than those employed in the above-mentioned systems, it is very likely that a superior combined system can be obtained by combining the proposed system with any of the aforementioned systems. Furthermore, when evaluated on the same data set, the proposed system is shown to be significantly superior to three other systems recently proposed in the literature. / AFRIKAANSE OPSOMMING: Die doel van ’n statiese handtekening-verifikasiestelsel is om die identiteit van ’n individu te bekragtig deur sy/haar handgeskrewe handtekening te analiseer, nadat dit suksesvol vanaf byvoorbeeld ’n tjek,’n debiet- of kredietkaattransaksiestrokie, of enige ander wettige dokument onttrek is. Die bevraagtekende handtekening word tipies vergelyk met ’n model wat afgerig is met bekende positiewe voorbeelde, waarna die stelsel poog om die handtekening as eg of vervals te klassifiseer. Klassifiseerder-fusie is die proses waardeer individuele klassifiseerders gekombineer word, ten einde ’n enkele klassifiseerder te konstrueer, wat meer akkuraat, maar meer berekeningsintensief as sy samestellende dele is. ’n Gekombineerde klassifiseerder bestaan derhalwe uit ’n ensemble van basis-klassifiseerders, wat gekombineer word met behulp van ’n spesifieke fusie-strategie. In hierdie projek word ’n nuwe statiese handtekening-verifikasiestelsel, wat van ’n multi-hipotese benadering en klassifiseerder-fusie gebruik maak, voorgestel. Elke basis-klassifiseerder word vanuit ’n verskuilde Markov-model (HMM) gekonstrueer, wat afgerig word met kenmerke wat vanuit lokale gebiede in die handtekening (lokale kenmerke), sowel as vanuit die handtekening in geheel (globale kenmerke), onttrek is. Ten einde dit te bewerkstellig, word elke handtekening in ’n aantal oorvleulende sirkulêre retinas gesoneer, waaruit kenmerke onttrek word deur die diskrete Radon-transform te implementeer. ’n Globale retina, wat die hele handtekening in beslag neem, word ook beskou. Aangesien die voorgestelde stelsel poog om hoë-kwaliteit vervalsings op te spoor, is dit onredelik om te verwag dat voorbeelde van hierdie handtekeninge beskikbaar sal wees vir elke nuwe skrywer (kliënt) wat vir die stelsel registreer. Die stelsel is derhalwe beperk in die sin dat slegs positiewe afrigvoorbeelde, wat bekom is van elke skrywer tydens registrasie, beskikbaar is. Dit is egter redelik om aan te neem dat beide positiewe en negatiewe voorbeelde beskikbaar sal wees vir ’n verteenwoordigende subversameling van sogenaamde proefkonynskrywers, byvoorbeeld bankpersoneel. Hierdie handtekeninge verteenwoordig ’n gereieflike optimeringstel, wat gebruik kan word om die mees bekwame ensemble te selekteer. ’n Handtekening, wat na bewering aan ’n wettige kliënt (lid van die algemene publiek) behoort, word dus verwerp of aanvaar op grond van die meerderheidstem-besluit van die basis-klassifiseerders in die mees bekwame ensemble. Wanneer die voorgestelde stelsel op ’n datastel, wat hoë-kwaliteit vervalsings bevat, ge-evalueer word, verhoog die insluiting van lokale kenmerke en klassifiseerder-fusie die prestasie van die stelsel beduidend. ’n Gelyke foutkoers van 8.6% word behaal, wat gunstig vergelyk met ’n gelyke foutkoers van 12.9% (’n verbetering van 33.3%) wanneer slegs globale kenmerke gebruik word. Aangesien daar geen standard internasionale statiese handtekening-verifikasiestelsel bestaan nie, word die meeste stelsels, wat in die literatuur voorgestel word, op ander datastelle ge-evalueer as die datastel wat in dié projek gebruik word. ’n Direkte vergelyking van resultate is dus nie moontlik nie. Desnieteenstaande, aangesien die voorgestelde stelsel beduidend ander kenmerke en/of modeleringstegnieke as dié wat in bogenoemde stelsels ingespan word gebruik, is dit hoogs waarskynlik dat ’n superieure gekombineerde stelsel verkry kan word deur die voorgestelde stelsel met enige van bogenoemde stelsels te kombineer. Voorts word aangetoon dat, wanneer op dieselfde datastel geevalueerword, die voorgestelde stelstel beduidend beter vaar as drie ander stelsels wat onlangs in die literatuur voorgestel is.
186

INCORPORATING MACHINE VISION IN PRECISION DAIRY FARMING TECHNOLOGIES

Shelley, Anthony N. 01 January 2016 (has links)
The inclusion of precision dairy farming technologies in dairy operations is an area of increasing research and industry direction. Machine vision based systems are suitable for the dairy environment as they do not inhibit workflow, are capable of continuous operation, and can be fully automated. The research of this dissertation developed and tested 3 machine vision based precision dairy farming technologies tailored to the latest generation of RGB+D cameras. The first system focused on testing various imaging approaches for the potential use of machine vision for automated dairy cow feed intake monitoring. The second system focused on monitoring the gradual change in body condition score (BCS) for 116 cows over a nearly 7 month period. Several proposed automated BCS systems have been previously developed by researchers, but none have monitored the gradual change in BCS for a duration of this magnitude. These gradual changes infer a great deal of beneficial and immediate information on the health condition of every individual cow being monitored. The third system focused on automated dairy cow feature detection using Haar cascade classifiers to detect anatomical features. These features included the tailhead, hips, and rear regions of the cow body. The features chosen were done so in order to aid machine vision applications in determining if and where a cow is present in an image or video frame. Once the cow has been detected, it must then be automatically identified in order to keep the system fully automated, which was also studied in a machine vision based approach in this research as a complimentary aspect to incorporate along with cow detection. Such systems have the potential to catch poor health conditions developing early on, aid in balancing the diet of the individual cow, and help farm management to better facilitate resources, monetary and otherwise, in an appropriate and efficient manner. Several different applications of this research are also discussed along with future directions for research, including the potential for additional automated precision dairy farming technologies, integrating many of these technologies into a unified system, and the use of alternative, potentially more robust machine vision cameras.
187

Classification of affect using novel voice and visual features

Kim, Jonathan Chongkang 07 January 2016 (has links)
Emotion adds an important element to the discussion of how information is conveyed and processed by humans; indeed, it plays an important role in the contextual understanding of messages. This research is centered on investigating relevant features for affect classification, along with modeling the multimodal and multitemporal nature of emotion. The use of formant-based features for affect classification is explored. Since linear predictive coding (LPC) based formant estimators often encounter problems with modeling speech elements, such as nasalized phonemes and give inconsistent results for bandwidth estimation, a robust formant-tracking algorithm was introduced to better model the formant and spectral properties of speech. The algorithm utilizes Gaussian mixtures to estimate spectral parameters and refines the estimates using maximum a posteriori (MAP) adaptation. When the method was used for features extraction applied to emotion classification, the results indicate that an improved formant-tracking method will also provide improved emotion classification accuracy. Spectral features contain rich information about expressivity and emotion. However, most of the recent work in affective computing has not progressed beyond analyzing the mel-frequency cepstral coefficients (MFCC’s) and their derivatives. A novel method for characterizing spectral peaks was introduced. The method uses a multi-resolution sinusoidal transform coding (MRSTC). Because of MRSTC’s high precision in representing spectral features, including preservation of high frequency content not present in the MFCC’s, additional resolving power was demonstrated. Facial expressions were analyzed using 53 motion capture (MoCap) markers. Statistical and regression measures of these markers were used for emotion classification along the voice features. Since different modalities use different sampling frequencies and analysis window lengths, a novel classifier fusion algorithm was introduced. This algorithm is intended to integrate classifiers trained at various analysis lengths, as well as those obtained from other modalities. Classification accuracy was statistically significantly improved using a multimodal-multitemporal approach with the introduced classifier fusion method. A practical application of the techniques for emotion classification was explored using social dyadic plays between a child and an adult. The Multimodal Dyadic Behavior (MMDB) dataset was used to automatically predict young children’s levels of engagement using linguistic and non-linguistic vocal cues along with visual cues, such as direction of a child’s gaze or a child’s gestures. Although this and similar research is limited by inconsistent subjective boundaries, and differing theoretical definitions of emotion, a significant step toward successful emotion classification has been demonstrated; key to the progress has been via novel voice and visual features and a newly developed multimodal-multitemporal approach.
188

Bimodal adaptive hypermedia and interactive multimedia a web-based learning environment based on Kolb's theory of learning style

Salehian, Bahram January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
189

Minimisation de fonctions de perte calibrée pour la classification des images / Minimization of calibrated loss functions for image classification

Bel Haj Ali, Wafa 11 October 2013 (has links)
La classification des images est aujourd'hui un défi d'une grande ampleur puisque ça concerne d’un côté les millions voir des milliards d'images qui se trouvent partout sur le web et d’autre part des images pour des applications temps réel critiques. Cette classification fait appel en général à des méthodes d'apprentissage et à des classifieurs qui doivent répondre à la fois à la précision ainsi qu'à la rapidité. Ces problèmes d'apprentissage touchent aujourd'hui un grand nombre de domaines d'applications: à savoir, le web (profiling, ciblage, réseaux sociaux, moteurs de recherche), les "Big Data" et bien évidemment la vision par ordinateur tel que la reconnaissance d'objets et la classification des images. La présente thèse se situe dans cette dernière catégorie et présente des algorithmes d'apprentissage supervisé basés sur la minimisation de fonctions de perte (erreur) dites "calibrées" pour deux types de classifieurs: k-Plus Proches voisins (kNN) et classifieurs linéaires. Ces méthodes d'apprentissage ont été testées sur de grandes bases d'images et appliquées par la suite à des images biomédicales. Ainsi, cette thèse reformule dans une première étape un algorithme de Boosting des kNN et présente ensuite une deuxième méthode d'apprentissage de ces classifieurs NN mais avec une approche de descente de Newton pour une convergence plus rapide. Dans une seconde partie, cette thèse introduit un nouvel algorithme d'apprentissage par descente stochastique de Newton pour les classifieurs linéaires connus pour leur simplicité et leur rapidité de calcul. Enfin, ces trois méthodes ont été utilisées dans une application médicale qui concerne la classification de cellules en biologie et en pathologie. / Image classification becomes a big challenge since it concerns on the one hand millions or billions of images that are available on the web and on the other hand images used for critical real-time applications. This classification involves in general learning methods and classifiers that must require both precision as well as speed performance. These learning problems concern a large number of application areas: namely, web applications (profiling, targeting, social networks, search engines), "Big Data" and of course computer vision such as the object recognition and image classification. This thesis concerns the last category of applications and is about supervised learning algorithms based on the minimization of loss functions (error) called "calibrated" for two kinds of classifiers: k-Nearest Neighbours (kNN) and linear classifiers. Those learning methods have been tested on large databases of images and then applied to biomedical images. In a first step, this thesis revisited a Boosting kNN algorithm for large scale classification. Then, we introduced a new method of learning these NN classifiers using a Newton descent approach for a faster convergence. In a second part, this thesis introduces a new learning algorithm based on stochastic Newton descent for linear classifiers known for their simplicity and their speed of convergence. Finally, these three methods have been used in a medical application regarding the classification of cells in biology and pathology.
190

Automatic Classification of Fish in Underwater Video; Pattern Matching - Affine Invariance and Beyond

gundam, madhuri, Gundam, Madhuri 15 May 2015 (has links)
Underwater video is used by marine biologists to observe, identify, and quantify living marine resources. Video sequences are typically analyzed manually, which is a time consuming and laborious process. Automating this process will significantly save time and cost. This work proposes a technique for automatic fish classification in underwater video. The steps involved are background subtracting, fish region tracking and classification using features. The background processing is used to separate moving objects from their surrounding environment. Tracking associates multiple views of the same fish in consecutive frames. This step is especially important since recognizing and classifying one or a few of the views as a species of interest may allow labeling the sequence as that particular species. Shape features are extracted using Fourier descriptors from each object and are presented to nearest neighbor classifier for classification. Finally, the nearest neighbor classifier results are combined using a probabilistic-like framework to classify an entire sequence. The majority of the existing pattern matching techniques focus on affine invariance, mainly because rotation, scale, translation and shear are common image transformations. However, in some situations, other transformations may be modeled as a small deformation on top of an affine transformation. The proposed algorithm complements the existing Fourier transform-based pattern matching methods in such a situation. First, the spatial domain pattern is decomposed into non-overlapping concentric circular rings with centers at the middle of the pattern. The Fourier transforms of the rings are computed, and are then mapped to polar domain. The algorithm assumes that the individual rings are rotated with respect to each other. The variable angles of rotation provide information about the directional features of the pattern. This angle of rotation is determined starting from the Fourier transform of the outermost ring and moving inwards to the innermost ring. Two different approaches, one using dynamic programming algorithm and second using a greedy algorithm, are used to determine the directional features of the pattern.

Page generated in 0.0266 seconds